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CS5321 

Numerical Optimization

10 Least Squares Problem



4/6/2009 2

Least-squares problems

� Linear least-squares problems

� QR method

� Nonlinear least-squares problems

� Gradient and Hessian of nonlinear LSP

� Gauss--Newton method

� Levenberg--Marquardt method

� Methods for large residual problem
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Example of linear least square

� y = β1 + β2x (from Wikipedia)

� β1 = 3.5, β2 = 1.4.  The line is  y = 3.5 + 1.4x



4/6/2009 4

Linear least squares problems

� A linear least-squares problem is f (x)=1/2||Ax−y||2. 

� It’s gradient is ∇f (x)=AT(Ax−y) 

� The optimal solution is at ∇f (x)=0, ATAx=ATy

� ATAx = ATy is called the normal equation.

� Perform QR decomposition on matrix A = QR. 

� RT is invertible.  The solution x = R−1QTy.

ATAx = RTQTQRx = RTQT y
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Example of nonlinear LS

� Find (x1,x2,x3,x4,x5) to minimize

φ(x, t) = x1 + tx2 + t
2x3 + x4e

−x5t

1

2

m∑

j=1

[φ(x, tj)− yj ]2
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Gradient and Hessian of LSP

� The object function of least squares problem is

where ri are n variable functions.

� Define                         The Jacobian

� Gradient 

Hessian 

f (x) =
1

2

m∑

j=1

r2j (x)

J(x) =






∇r1(x)T
∇r2(x)T

...
∇rm(x)T






R(x) =






r1(x)
r2(x)
...

rm(x)






∇f(x) =
m∑

j=1

rj(x)∇rj(x) = J(x)TR(x)

∇2f(x) = J(x)TJ(x) +
m∑

j=1

rj(x)∇2rj(x)T
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Gauss-Newton method

� Gauss-Newton uses the Hessian approximation 

� It’s a good approximation if ||R|| is small.

� This is the matrix of the normal equation

� Usually with the line search technique

� Replace with

∇2f(x) = J(x)TJ(x) +
m∑

j=1

rj(x)∇2rj(x)T

∇2f(x) ≈ J(x)TJ(x)

f (x) =
1

2

m∑

j=1

r2j (x) f(x) =
1

2
‖Jp+R‖2
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Convergence of Gauss-Newton

� Suppose each rj is Lipschitz continuously 

differentiable in a neighborhood N of {x|f(x)≤f(x0)} 

and the Jacobians J(x) satisfy ||J(x)z||≥γ||z||. Then 

the Gauss-Newton method, with αk that satisfies 

the Wolfe conditions, has

lim
k→∞

JTk Rk = 0
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Levenberg-Marquardt method

� Gauss-Newton + trust region

� The problem becomes

subject to  || p || ≤ ∆k

� Optimal condition: (recall that in chap 4) 

� Equivalent linear least-square problem

min
p

1

2
‖Jp + R‖2

(JTJ + λI)p = −JTR
λ(∆ − ‖p‖) = 0

min
p

1

2

∥∥∥∥

(
J√
λI

)
p+

(
R

0

)∥∥∥∥

2
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Convergence of Levenberg-

Marquardt

� Suppose L={x | f (x) ≤ f (x0)} is bounded and each 

rj is Lipschitz continuously differentiable in a 
neighborhood N of L. Assume for each k, the 

approximation solution pk of the Levenberg-

Marquardt method satisfies the inequality

for some constant c1>0, and ||pk||≤γ∆k for some γ>1. 

Then lim
k→∞

JTk Rk = 0

mk(0)−mk(pk) ≥ c1‖JTk rk‖min
(
∆k,

‖JTk rk‖
‖JTk Jk‖

)
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Large residual problem

� When the second term of the Hessian is large

� Use quasi-Newton to approximate the second term

� The secant equation of ∇2rj(x) is 

� The secant equation of the second term and the update 

formula (next slide)

∇2f(x) = J(x)TJ(x) +
m∑

j=1

rj(x)∇2rj(x)T

(Bj)(xk+1 − xk) = ∇rj(xk+1)−∇rj(xk)
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Sk+1 = Sk +
(z − Sks)yT + y(z − Sks)T

yT s
− (z − Sks)

T s

(yT s)2
yyT

s = xk+1 − xk
y = JTk+1rk+1 − JTk rk
z = JTk+1rk+1 − JTk rk+1

Sk+1(xk+1 − xk) =
m∑

j=1

rj(xk+1)(Bj)k+1(xk+1 − xk)

=
m∑

j=1

rj(xk+1)[∇rj(xk+1)−∇rj(xk)]

= JTk+1Rk+1 − JTk Rk+1

Dennis, Gay, Welsch update formula.


