CS5321
 Numerical Optimization

10 Least Squares Problem

Least-squares problems

- Linear least-squares problems
- QR method
- Nonlinear least-squares problems
- Gradient and Hessian of nonlinear LSP
- Gauss--Newton method
- Levenberg--Marquardt method
- Methods for large residual problem

Example of linear least square

- $y=\beta_{1}+\beta_{2} x$ (from Wikipedia)

$$
\beta_{1}+1 \beta_{2}=6
$$

$$
\beta_{1}+2 \beta_{2}=5
$$

$$
\beta_{1}+3 \beta_{2}=7
$$

$$
\beta_{1}+4 \beta_{2}=10
$$

$\left[6-\left(\beta_{1}+1 \beta_{2}\right)\right]^{2}+\left[5-\left(\beta_{1}+2 \beta_{2}\right)\right]^{2}+\left[7-\left(\beta_{1}+3 \beta_{2}\right)\right]^{2}+\left[10-\left(\beta_{1}+4 \beta_{2}\right)\right]^{2}$

- $\beta_{1}=3.5, \beta_{2}=1.4$. The line is $y=3.5+1.4 x$

Linear least squares problems

- A linear least-squares problem is $f(x)=1 / 2\|A x-y\|^{2}$.
- It's gradient is $\nabla f(x)=A^{\mathrm{T}}(A x-y)$
- The optimal solution is at $\nabla f(x)=0, A^{\mathrm{T}} A x=A^{\mathrm{T}} y$
- $A^{\mathrm{T}} A x=A^{\mathrm{T}} y$ is called the normal equation.
- Perform QR decomposition on matrix $A=Q R$.

$$
A^{T} A x=R^{T} Q^{T} Q R x=R^{T} Q^{T} y
$$

- R^{T} is invertible. The solution $x=R^{-l} Q^{T} y$.

Example of nonlinear LS

$\phi(x, t)=x_{1}+t x_{2}+t^{2} x_{3}+x_{4} e^{-x_{5} t}$

- Find $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ to minimize $\frac{1}{2} \sum_{j=1}^{m}\left[\phi\left(x, t_{j}\right)-y_{j}\right]^{2}$

Gradient and Hessian of LSP

- The object function of least squares problem is $f(x)=\frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}(x)$ where r_{i} are n variable functions.
- Define $R(x)=\left(\begin{array}{c}r_{1}(x) \\ r_{2}(x) \\ \vdots \\ r_{m}(x)\end{array}\right)_{m}$ The Jacobian $J(x)=\left(\begin{array}{c}\nabla r_{1}(x)^{T} \\ \nabla r_{2}(x)^{T} \\ \vdots \\ \nabla r_{m}(x)^{T}\end{array}\right)$
- Gradient $\nabla f(x)=\sum_{j=1}^{m} r_{j}(x) \nabla r_{j}(x)=J(x)^{T} R(x)$

Hessian $\nabla^{2} f(x)=J(x)^{T} J(x)+\sum_{j=1}^{m} r_{j}(x) \nabla^{2} r_{j}(x)^{T}$

Gauss-Newton method

$$
\nabla^{2} f(x)=J(x)^{T} J(x)+\sum_{j=1}^{m} r_{j}(x) \nabla^{2} r_{j}(x)^{T}
$$

- Gauss-Newton uses the Hessian approximation

$$
\nabla^{2} f(x) \approx J(x)^{T} J(x)
$$

- It's a good approximation if ||R $\|$ is small.
- This is the matrix of the normal equation
- Usually with the line search technique
- Replace $f(x)=\frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}(x)$ with $f(x)=\frac{1}{2}\|J p+R\|^{2}$

Convergence of Gauss-Newton

- Suppose each r_{j} is Lipschitz continuously differentiable in a neighborhood \mathcal{N} of $\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$ and the Jacobians $J(x)$ satisfy $\|J(x) z\| \geq \gamma\|z\|$. Then the Gauss-Newton method, with α_{k} that satisfies the Wolfe conditions, has

$$
\lim _{k \rightarrow \infty} J_{k}^{T} R_{k}=0
$$

Levenberg-Marquardt method

- Gauss-Newton + trust region
- The problem becomes

$$
\min _{p} \frac{1}{2}\|J p+R\|^{2} \text { subject to }\|p\| \leq \Delta_{\mathrm{k}}
$$

- Optimal condition: (recall that in chap 4)

$$
\begin{aligned}
\left(J^{T} J+\lambda I\right) p & =-J^{T} R \\
\lambda(\Delta-\|p\|) & =0
\end{aligned}
$$

- Equivalent linear least-square problem

$$
\min _{p} \frac{1}{2}\left\|\binom{J}{\sqrt{\lambda} I} p+\binom{R}{0}\right\|^{2}
$$

Convergence of LevenbergMarquardt

- Suppose $\mathcal{L}=\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$ is bounded and each r_{j} is Lipschitz continuously differentiable in a neighborhood \mathcal{N} of \mathcal{L}. Assume for each k, the approximation solution p_{k} of the LevenbergMarquardt method satisfies the inequality
$m_{k}(0)-m_{k}\left(p_{k}\right) \geq c_{1}\left\|J_{k}^{T} r_{k}\right\| \min \left(\Delta_{k}, \frac{\left\|J_{k}^{T} r_{k}\right\|}{\left\|J_{k}^{T} J_{k}\right\|}\right)$
for some constant $c_{1}>0$, and $\left\|p_{k}\right\| \leq \gamma \Delta_{\mathrm{k}}$ for some $\gamma>1$.
Then $\lim _{k \rightarrow \infty} J_{k}^{T} R_{k}=0$

Large residual problem

$$
\nabla^{2} f(x)=J(x)^{T} J(x)+\sum_{j=1}^{m} r_{j}(x) \nabla^{2} r_{j}(x)^{T}
$$

- When the second term of the Hessian is large
- Use quasi-Newton to approximate the second term
- The secant equation of $\nabla^{2} r_{j}(x)$ is

$$
\left(B_{j}\right)\left(x_{k+1}-x_{k}\right)=\nabla r_{j}\left(x_{k+1}\right)-\nabla r_{j}\left(x_{k}\right)
$$

- The secant equation of the second term and the update formula (next slide)

$$
\begin{aligned}
S_{k+1}\left(x_{k+1}-x_{k}\right) & =\sum_{j=1}^{m} r_{j}\left(x_{k+1}\right)\left(B_{j}\right)_{k+1}\left(x_{k+1}-x_{k}\right) \\
& =\sum_{j=1}^{m} r_{j}\left(x_{k+1}\right)\left[\nabla r_{j}\left(x_{k+1}\right)-\nabla r_{j}\left(x_{k}\right)\right] \\
& =J_{k+1}^{T} R_{k+1}-J_{k}^{T} R_{k+1}
\end{aligned}
$$

Dennis, Gay, Welsch update formula.

$$
\begin{aligned}
& S_{k+1}=S_{k}+\frac{\left(z-S_{k} s\right) y^{T}+y\left(z-S_{k} s\right)^{T}}{y^{T} s}-\frac{\left(z-S_{k} s\right)^{T} s}{\left(y^{T} s\right)^{2}} y y^{T} \\
& s=x_{k+1}-x_{k} \\
& y=J_{k+1}^{T} r_{k+1}-J_{k}^{T} r_{k} \\
& z=J_{k+1}^{T} r_{k+1}-J_{k}^{T} r_{k+1}
\end{aligned}
$$

