CS5321 Numerical Optimization

10 Least Squares Problem

Least-squares problems

- Linear least-squares problems
 - QR method
- Nonlinear least-squares problems
 - Gradient and Hessian of nonlinear LSP
 - Gauss--Newton method
 - Levenberg--Marquardt method
 - Methods for large residual problem

Example of linear least square

Linear least squares problems

- A linear least-squares problem is $f(x)=\frac{1}{2}||Ax-y||^2$.
- It's gradient is $\nabla f(x) = A^T(Ax y)$
- The optimal solution is at ∇f (x)=0, A^TAx=A^Ty
 A^TAx = A^Ty is called the *normal* equation.
- Perform QR decomposition on matrix A = QR. $A^T A x = R^T Q^T Q R x = R^T Q^T y$
 - R^T is invertible. The solution $x = R^{-1}Q^T y$.

Gradient and Hessian of LSP

• The object function of least squares problem is $f(x) = \frac{1}{2} \sum_{j=1}^{m} r_j^2(x) \text{ where } r_i \text{ are } n \text{ variable functions.}$ • Define $R(x) = \begin{pmatrix} r_1(x) \\ r_2(x) \\ \vdots \\ r_m(x) \end{pmatrix}$ The Jacobian $J(x) = \begin{pmatrix} \nabla r_1(x)^T \\ \nabla r_2(x)^T \\ \vdots \\ \nabla r_m(x)^T \end{pmatrix}$ • Gradient $\nabla f(x) = \sum_{i=1}^{n} r_j(x) \nabla r_j(x) = J(x)^T R(x)$ Hessian $\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x)^T$

Gauss-Newton method

$$\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x)^T$$

m

- Gauss-Newton uses the Hessian approximation $\nabla^2 f(x) \approx J(x)^T J(x)$
 - It's a good approximation if ||R|| is small.
 - This is the matrix of the normal equation
 - Usually with the line search technique

• Replace
$$f(x) = \frac{1}{2} \sum_{j=1}^{m} r_j^2(x)$$
 with $f(x) = \frac{1}{2} ||Jp + R||^2$

Convergence of Gauss-Newton

• Suppose each r_j is Lipschitz continuously differentiable in a neighborhood \mathcal{N} of $\{x|f(x) \leq f(x_0)\}$ and the Jacobians J(x) satisfy $||J(x)z|| \geq \gamma ||z||$. Then the Gauss-Newton method, with α_k that satisfies the Wolfe conditions, has

$$\lim_{k \to \infty} J_k^T R_k = 0$$

Levenberg-Marquardt method

- Gauss-Newton + trust region
- The problem becomes
 min ¹/₂ ||Jp + R||² subject to || p || ≤ Δ_k

 Optimal condition: (recall that in chap 4)
 (J^TJ + λI)p = -J^TR
 λ(Δ ||p||) = 0
- Equivalent linear least-square problem

$$\min_{p} \frac{1}{2} \left\| \begin{pmatrix} J \\ \sqrt{\lambda}I \end{pmatrix} p + \begin{pmatrix} R \\ 0 \end{pmatrix} \right\|^{2}$$

Convergence of Levenberg-Marquardt

• Suppose $\mathcal{L}=\{x \mid f(x) \leq f(x_0)\}$ is bounded and each r_j is Lipschitz continuously differentiable in a neighborhood \mathcal{N} of \mathcal{L} . Assume for each k, the approximation solution p_k of the Levenberg-Marquardt method satisfies the inequality

$$m_k(0) - m_k(p_k) \ge c_1 \|J_k^T r_k\| \min\left(\Delta_k, \frac{\|J_k^T r_k\|}{\|J_k^T J_k\|}\right)$$

for some constant $c_1 > 0$, and $||p_k|| \le \gamma \Delta_k$ for some $\gamma > 1$. Then $\lim_{k \to \infty} J_k^T R_k = 0$

Large residual problem

$$\nabla^2 f(x) = J(x)^T J(x) + \sum_{j=1}^m r_j(x) \nabla^2 r_j(x)^T$$

- When the second term of the Hessian is large
 - Use quasi-Newton to approximate the second term
 - The secant equation of $\nabla^2 r_i(x)$ is

$$(B_j)(x_{k+1} - x_k) = \nabla r_j(x_{k+1}) - \nabla r_j(x_k)$$

• The secant equation of the second term and the update formula (next slide)

$$S_{k+1}(x_{k+1} - x_k) = \sum_{j=1}^{m} r_j(x_{k+1})(B_j)_{k+1}(x_{k+1} - x_k) \bigg|$$

=
$$\sum_{j=1}^{m} r_j(x_{k+1})[\nabla r_j(x_{k+1}) - \nabla r_j(x_k)]$$

=
$$J_{k+1}^T R_{k+1} - J_k^T R_{k+1}$$

Dennis, Gay, Welsch update formula.

$$S_{k+1} = S_k + \frac{(z - S_k s)y^T + y(z - S_k s)^T}{y^T s} - \frac{(z - S_k s)^T s}{(y^T s)^2} yy^T$$

$$s = x_{k+1} - x_k$$

$$y = J_{k+1}^T r_{k+1} - J_k^T r_k$$

$$z = J_{k+1}^T r_{k+1} - J_k^T r_{k+1}$$