CS5321 Numerical Optimization

07 Large-Scale Unconstrained Optimization

Large-scaled optimizations

- The problem size *n* may be thousands to millions.
- Storage of Hessian is n^2 .
 - Even if it is sparse, its decompositions (LU, Cholesky...) and its approximations (BFGS, SR1...) are not.
- Methods
 - Inexact Newton methods
 - Line-search: Truncated Newton method
 - Trust region: Steihaug's algorithm
 - Limited memory BFGS, Sparse quasi-Newton updates
 - Algorithms for partially separable functions

Inexact Newton method

- Inexact Newton methods use iterative methods to solve the Newton's direction $p = -H^{-1}g$ inexactly.
 - The exactness is measured by the residual $r_k = H_k p_k + g_k$
 - It stops when $||r_k|| \le \eta_k ||g_k||$ for $0 \le \eta_k \le 1$.
- Convergence (Theorem 7.1, 7.2)
 If *H* is spd for *x* near *x**, and *x*₀ is close enough to *x**, the inexact Newton method converges to *x**. If η_k→0, the convergence is superlinear. In addition, if *H* is Lipschitz continuous for *x* near *x**, the convergence is quadratic.

Truncated Newton method

- CG + line search + termination conditions
- What CG need is matrix-vector multiplications
 - Use finite difference to approximate Hessian (multiplying a vector *d*.).

$$Hd = \nabla^2 f_k d = \frac{\nabla f(x_k + hd) - \nabla f(x_k)}{h}$$

- The cost is the computation of $\nabla f(x_k + hd)$
- Additional termination conditions
 - When negative curvature is detected $p^{T}Hp < 0$, return -g

Steihaug's algorithm

- CG + trust-region + termination conditions
 - Change terminations of CG: $x \rightarrow z, p \rightarrow d$. Index j
- Additional termination conditions
 - 1. When negative curvature is detected $p^{T}Hp < 0$,
 - 2. When the step size $||z_j|| \ge \Delta_k$,
 - It can be shown that $||z_j||$ increases monotonically
- When stops abnormally, it returns $z_j + \tau d_j$, where τ minimizes $m_k(z_j + \tau d_j)$ subject to $||z_j + \tau d_j|| = \Delta_k$.

Limited memory BFGS

• Review of BFGS

 $x_{k+1} = x_k + \alpha_k p_k, \ s_k = x_{k+1} - x_k = \alpha_k p_k, \ y_k = g_{k+1} - g_k$

 $H_{k+1} = V_k^T H_k V_k + \rho_k s_k s_k^T$, $V_k = I - \rho_k s_k y_k^T$, $\rho_k = 1/y_k^T s_k$

• L-BFGS: Not form H_k explicitly

• Store s_k and y_k for *m* iterations (m << n)

$$H_{k} = (V_{k-1}^{T} \cdots V_{k-m}^{T}) H_{k}^{0} (V_{k-m}^{T} \cdots V_{k-1}^{T})$$

$$+ \rho_{k-m} (V_{k-1}^{T} \cdots V_{k-m+1}^{T}) s_{k-m} s_{k-m}^{T} (V_{k-m+1}^{T} \cdots V_{k-1}^{T})$$

$$+ \rho_{k-m+1} (V_{k-1}^{T} \cdots V_{k-m+2}^{T}) s_{k-m} s_{k-m}^{T} (V_{k-m+2}^{T} \cdots V_{k-1}^{T})$$

$$+ \cdots + \rho_{k-1} s_{k-1} s_{k-1}^{T}$$

$$6$$

4/

Compact form of L-BFGS

$$B_k = B_0 - \begin{pmatrix} B_0 S_k & Y_k \end{pmatrix} \begin{pmatrix} S_k^T B_0 S_k & L_k \\ L_k^T & -D_k \end{pmatrix}^{-1} \begin{pmatrix} S_k^T B_0 \\ Y_k^T \end{pmatrix}$$

$$S_k = \left(\begin{array}{ccc} s_0 & \dots & s_{k-1} \end{array}\right)$$

$$Y_k = \left(egin{array}{cccc} y_0 & \ldots & y_{k-1} \end{array}
ight)$$

$$(L_k)_{i,j} = \begin{cases} s_{i-1}^T y_{j-1} & \text{if } i > j, \\ 0 & \text{otherwise}, \end{cases}$$

$$D_k = \text{diag}(s_0^T y_0, \dots, s_{k-1}^T y_{k-1})$$

- Only need to store S_k, Y_k, L_k, D_k .
 - S_k , Y_k are $n \times m$.
 - L_k is $m \times m$ upper triangular.
 - D_k is $m \times m$ diagonal.

Sparse quasi-Newton updates

- Compute B_{k+1} that is symmetric and
 - has the same sparsity as the exact Hessian.
 - satisfies secant direction. $B_{k+1}s_k = y_k$.
- Sparsity: $\Omega = \{(i, j) \mid [\nabla^2 f(x)]_{ij} \neq 0\}$ $\min_{D} ||B - B_k||_F^2 = \sum_{j=1}^{n} [B_{ij} - (B_k)_{ij}]^2$
 - Subject to $B_{k+1}s_k = y_k$, $B = B^T$ and $B_{ij} = 0$ for $(i, j) \in \Omega$

 $(i,j) \in \Omega$

- Constrained nonlinear least square problem
- The solution may fail to be positive definite.

8

Partially separable functions

- Separable object function: $f(x) = f_1(x_1, x_3) + f_2(x_2, x_4)$
- Partially separable object function f(x):
 - f(x) can be decomposed as a sum of element functions
 f_i, which depends only a few components of x.

 $f(x) = (x_1 - x_3^2)^2 + (x_2 - x_4^2)^2 + (x_3 - x_2^2)^2 + (x_4 - x_1^2)^2$

• Gradient and Hessian are linear operators

$$f(x) = \sum_{i=1}^{\ell} f_i(x), \quad \nabla f(x) = \sum_{i=1}^{\ell} \nabla f_i(x), \quad \nabla^2 f(x) = \sum_{i=1}^{\ell} \nabla^2 f_i(x),$$

• Compute Hessian of each element functions separately