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CS5321 

Numerical Optimization

07 Large-Scale Unconstrained 

Optimization
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Large-scaled optimizations

� The problem size n may be thousands to millions.

� Storage of Hessian is n2. 

� Even if it is sparse, its decompositions (LU, Cholesky…) 
and its approximations (BFGS, SR1…) are not. 

� Methods

� Inexact Newton methods 

� Line-search: Truncated Newton method

� Trust region: Steihaug’s algorithm

� Limited memory BFGS, Sparse quasi-Newton updates

� Algorithms for partially separable functions
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Inexact Newton method

� Inexact Newton methods use iterative methods to 

solve the Newton’s direction p = −H−1g inexactly.

� The exactness is measured by the residual rk=Hkpk+gk

� It stops when ||rk|| ≤ ηk||gk|| for 0< ηk <1.

� Convergence (Theorem 7.1, 7.2)

If H is spd for x near x*, and x0 is close enough to x*, 

the inexact Newton method converges to x*.  If ηk→0, 

the convergence is superlinear.  In addition, if H is 

Lipschitz continuous for x near x*, the convergence is 

quadratic.
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Truncated Newton method

� CG + line search + termination conditions

� What CG need is matrix-vector multiplications

� Use finite difference to approximate Hessian 

(multiplying a vector d.).

� The cost is the computation of ∇f (xk+hd)

� Additional termination conditions

� When negative curvature is detected pTHp<0, return −g

Hd = ∇2fkd =
∇f(xk + hd)−∇f(xk)

h
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Steihaug’s algorithm

� CG + trust-region + termination conditions

� Change terminations of CG: x→z, p→d. Index j

� Additional termination conditions

1. When negative curvature is detected pTHp<0,

2. When the step size ||zj||≥∆k, 

� It can be shown that ||zj|| increases monotonically

� When stops abnormally, it returns zj+ τdj, where 

τ minimizes mk(zj+ τdj) subject to || zj+ τdj ||=∆k. 
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Limited memory BFGS

� Review of BFGS

, ,

� L-BFGS: Not form Hk explicitly 

� Store sk and yk for m iterations (m << n)

ρk = 1/y
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Compact form of L-BFGS

� Only need to store 

Sk, Yk, Lk, Dk.

� Sk, Yk are n×m.

� Lk is m×m upper 

triangular.

� Dk is m×m diagonal.

(Lk)i,j =

{
sTi−1yj−1 if i > j,
0 otherwise,

Dk = diag(s
T
0 y0, . . . , s

T
k−1yk−1)

Bk = B0 −
(
B0Sk Yk

)( STk B0Sk Lk
LTk −Dk

)−1(
STk B0
Y Tk

)

Sk =
(
s0 . . . sk−1

)

Yk =
(
y0 . . . yk−1

)
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Sparse quasi-Newton updates

� Compute Bk+1 that is symmetric and 

� has the same sparsity as the exact Hessian.

� satisfies secant direction. Bk+1sk=yk.

� Sparsity:  Ω={(i, j) | [∇2f (x)]ij≠0}

� Subject to Bk+1sk=yk, B=BT and Bij=0 for (i, j)∈Ω

� Constrained nonlinear least square problem

� The solution may fail to be positive definite.

min
B
‖B −Bk‖

2
F =

∑

(i,j)∈Ω

[Bij − (Bk)ij]
2
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Partially separable functions

� Separable object function: f (x) = f1(x1,x3)+f2(x2,x4)

� Partially separable object function f (x):

� f (x) can be decomposed as a sum of element functions 

fi, which depends only a few components of x. 

� Gradient and Hessian are linear operators

� Compute Hessian of each element functions separately

f(x) = (x1 − x
2
3)
2 + (x2 − x

2
4)
2 + (x3 − x

2
2)
2 + (x4 − x

2
1)
2

f(x) =
ℓ∑

i=1

fi(x), ∇f(x) =
ℓ∑

i=1

∇fi(x), ∇2f(x) =
ℓ∑

i=1

∇2fi(x),


