CS5321
 Numerical Optimization

07 Large-Scale Unconstrained
Optimization

Large-scaled optimizations

- The problem size n may be thousands to millions.
- Storage of Hessian is n^{2}.
- Even if it is sparse, its decompositions (LU, Cholesky...) and its approximations (BFGS, SR1...) are not.
- Methods
- Inexact Newton methods
- Line-search: Truncated Newton method
- Trust region: Steihaug's algorithm
- Limited memory BFGS, Sparse quasi-Newton updates
- Algorithms for partially separable functions

Inexact Newton method

- Inexact Newton methods use iterative methods to solve the Newton's direction $p=-H^{-1} g$ inexactly.
- The exactness is measured by the residual $r_{\mathrm{k}}=H_{\mathrm{k}} p_{\mathrm{k}}+g_{\mathrm{k}}$
- It stops when $\left\|r_{\mathrm{k}}\right\| \leq \eta_{k}\left\|g_{k}\right\|$ for $0<\eta_{k}<1$.
- Convergence (Theorem 7.1, 7.2)

If H is spd for x near x^{*}, and x_{0} is close enough to x^{*}, the inexact Newton method converges to x^{*}. If $\eta_{k} \rightarrow 0$, the convergence is superlinear. In addition, if H is Lipschitz continuous for x near x^{*}, the convergence is quadratic.

Truncated Newton method

- $\mathrm{CG}+$ line search + termination conditions
- What CG need is matrix-vector multiplications
- Use finite difference to approximate Hessian (multiplying a vector d.).

$$
H d=\nabla^{2} f_{k} d=\frac{\nabla f\left(x_{k}+h d\right)-\nabla f\left(x_{k}\right)}{h}
$$

- The cost is the computation of $\nabla f\left(x_{k}+h d\right)$
- Additional termination conditions
- When negative curvature is detected $p^{\mathrm{T}} H p<0$, return $-g$

Steihaug's algorithm

- $\mathrm{CG}+$ trust-region + termination conditions
- Change terminations of CG: $x \rightarrow z, p \rightarrow d$. Index j
- Additional termination conditions

1. When negative curvature is detected $p^{\mathrm{T}} H p<0$,
2. When the step size $\left\|z_{j}\right\| \geq \Delta_{k}$,

- It can be shown that $\left\|z_{j}\right\|$ increases monotonically
- When stops abnormally, it returns $z_{\mathrm{j}}+\tau d_{\mathrm{j}}$, where τ minimizes $m_{\mathrm{k}}\left(z_{\mathrm{j}}+\tau d_{\mathrm{j}}\right)$ subject to $\left\|z_{\mathrm{j}}+\tau d_{\mathrm{j}}\right\|=\Delta_{k}$.

Limited memory BFGS

- Review of BFGS

$$
\begin{aligned}
& x_{k+1}=x_{k}+\alpha_{k} p_{k}, s_{k}=x_{k+1}-x_{k}=\alpha_{k} p_{k}, y_{k}=g_{k+1}-g_{k} \\
& H_{k+1}=V_{k}^{T} H_{k} V_{k}+\rho_{k} s_{k} s_{k}^{T}, V_{k}=I-\rho_{k} s_{k} y_{k}^{T}, \rho_{k}=1 / y_{k}^{T} s_{k}
\end{aligned}
$$

- L-BFGS: Not form H_{k} explicitly
- Store s_{k} and y_{k} for m iterations ($\mathrm{m} \ll \mathrm{n}$)

$$
H_{k}=\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) H_{k}^{0}\left(V_{k-m}^{T} \cdots V_{k-1}^{T}\right)
$$

$$
+\rho_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right)
$$

$$
+\rho_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right)
$$

$$
+\cdots+\rho_{k-1} s_{k-1} s_{k-1}^{T}
$$

Compact form of L-BFGS

$$
\begin{aligned}
& B_{k}=B_{0}-\left(\begin{array}{ll}
B_{0} S_{k} & Y_{k}
\end{array}\right)\left(\begin{array}{cc}
S_{k}^{T} B_{0} S_{k} & L_{k} \\
L_{k}^{T} & -D_{k}
\end{array}\right)^{-1}\binom{S_{k}^{T} B_{0}}{Y_{k}^{T}} \\
& S_{k}=\left(\begin{array}{lll}
s_{0} & \ldots & s_{k-1}
\end{array}\right) \\
& Y_{k}=\left(\begin{array}{lll}
y_{0} & \ldots & y_{k-1}
\end{array}\right) \\
& \left(L_{k}\right)_{i, j}= \begin{cases}s_{i-1}^{T} y_{j-1} & \text { if } i>j, \\
0 & \text { otherwise, },\end{cases} \\
& D_{k}=\operatorname{diag}\left(s_{0}^{T} y_{0}, \ldots, s_{k-1}^{T} y_{k-1}\right) \\
& \text { - Only need to store } \\
& S_{k}, Y_{k}, L_{k}, D_{k} \text {. } \\
& \text { - } S_{\mathrm{k}}, Y_{\mathrm{k}} \text { are } n \times m \text {. } \\
& \text { - } L_{k} \text { is } m \times m \text { upper } \\
& \text { triangular. } \\
& \text { - } D_{k} \text { is } m \times m \text { diagonal. }
\end{aligned}
$$

Sparse quasi-Newton updates

- Compute $B_{\mathrm{k}+1}$ that is symmetric and
- has the same sparsity as the exact Hessian.
- satisfies secant direction. $B_{\mathrm{k}+1} s_{\mathrm{k}}=y_{\mathrm{k}}$.
- Sparsity: $\Omega=\left\{(i, j) \mid\left[\nabla^{2} f(x)\right]_{i j} \neq 0\right\}$

$$
\min _{B}\left\|B-B_{k}\right\|_{F}^{2}=\sum_{(i, j) \in \Omega}\left[B_{i j}-\left(B_{k}\right)_{i j}\right]^{2}
$$

- Subject to $B_{\mathrm{k}+1} s_{\mathrm{k}}=y_{\mathrm{k}}, B=B^{\mathrm{T}}$ and $B_{i j}=0$ for $(i, j) \in \Omega$
- Constrained nonlinear least square problem
- The solution may fail to be positive definite.

Partially separable functions

- Separable object function: $f(x)=f_{1}\left(x_{1}, x_{3}\right)+f_{2}\left(x_{2}, x_{4}\right)$
- Partially separable object function $f(x)$:
- $f(x)$ can be decomposed as a sum of element functions f_{i}, which depends only a few components of x.

$$
f(x)=\left(x_{1}-x_{3}^{2}\right)^{2}+\left(x_{2}-x_{4}^{2}\right)^{2}+\left(x_{3}-x_{2}^{2}\right)^{2}+\left(x_{4}-x_{1}^{2}\right)^{2}
$$

- Gradient and Hessian are linear operators

$$
f(x)=\sum_{i=1}^{\ell} f_{i}(x), \quad \nabla f(x)=\sum_{i=1}^{\ell} \nabla f_{i}(x), \quad \nabla^{2} f(x)=\sum_{i=1}^{\ell} \nabla^{2} f_{i}(x),
$$

- Compute Hessian of each element functions separately

