CS5321 Numerical Optimization

06 Quasi-Newton Methods

Hessian matrix

- The Hessian matrix *B* is needed in computing Newton's direction $p_k = -B_k^{-1} \nabla f_k$.
 - What needed is the inverse multiplying a vector.
 - Approximate result maybe good enough in use.
- Quasi-Newton: use gradient vector to approximate Hessian
 - DFP and BFGS updating formula
 - SR1 (Symmetric Rank 1 update) method
 - Broyden class

The secant formula

- Suppose we have Hessian B_k at current point x_k
- Next point is $x_{k+1} = x_k + \alpha_k p_k$
- The model at x_{k+1} is $m_{k+1}(p) = f_{k+1} + g_{k+1}^T p + \frac{1}{2}p^T B_{k+1}p$
- Assume $\nabla m_{k+1}(-\alpha_k p_k) = g_{k+1} \alpha_k B_{k+1} p_k = g_k$ and let $s_k = x_{k+1} - x_k = \alpha_k p_k$ and $y_k = g_{k+1} - g_k$
 - Then we have the *secant* formula

$$B_{k+1}s_k = y_k$$

• Also require B_{k+1} to be spd $s_k^T B_{k+1} s_k = s_k^T y_k > 0$

DFP updating formula

- The problem of approximating B_{k+1} becomes $\min_B ||B - B_k||$ subject to $B = B^T, Bs_k = y_k$
- With some special norm, the solution is

 $B_{k+1} = (I - \rho_k y_k s_k^T) B_k (I - \rho_k s_k y_k^T) + \rho_k y_k y_k^T$ $\rho_k = 1/y_k^T s_k$

- This is the DFP updating formula
 - Davidon, Fletcher and Powell

BFGS updating formula

- Let $H_k = B_k^{-1}$. Similar results can be obtained $\min_H ||H - H_k||$ subject to $H = H^T, Hy_k = s_k$
- The solution is

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$
$$\rho_k = 1/y_k^T s_k$$

- This is the BFGS updating formula
 - Broyden, Fletcher, Goldfarb, and Shanno

More on **BFGS**

- The initial H_0 need be constructed
 - Finite difference or automatic differentiation (chap 8)
 - Using identity matrix or $(y_k^T s_k / y_k^T y_k)I$
- Hessian B_k can be constructed via the Sherman-Morrison-Woodbury formula (rank 2 update)

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$

• If H_k is positive definite, H_{k+1} is positive definite.

The SR1 method

- Desire a symmetric rank 1 update, $B_{k+1} = B_k + \rho v v^T$, that satisfies the secant constrain: $y_k = B_{k+1}s_k$. $y_k = (B_k + \rho v v^T)s_k = B_k s_k + (\rho v^T s_k)v$
 - Vector v is parallel to $(y_k B_k s_k)$. Let $v = \delta(y_k B_k s_k)$
 - Substitute back to the secant constrain

$$\rho = \operatorname{sign}[s_k^T(y_k - B_k s_k)], \pm = \{ [s_k^T(y_k - B_k s_k)]^{-1/2}$$

• Let $z_k = y_k - B_k s_k$. The SR1 is $B_{k+1} = B_k + \frac{z_k z_k^T}{z_k^T s_k}$

More on the SR1

• Let $w_k = s_k - H_k y_k$. By Sherman-Morrison formula, $H_{k+1} = H_k + \frac{w_k w_k^T}{w_k^T y_k}$

• If
$$y_k = B_k s_k, B_{k+1} = B_k$$
.

- If $y_k \neq B_k s_k$ but $(y_k B_k s_k)^T s_k = 0$, there is no the SR1.
 - If $(y_k B_k s_k)^T s_k \approx 0$, the SR1 is numerical instable.
 - Use $B_{k+1} = B_k$.
- In practice, the B_k generated by the SR1 satisfies $\lim_{k \to \infty} ||B_k - \nabla^2 f(x^*)|| = 0$

The Broyden class

• The Broyden class is a family of quasi-Newton updating formulas that have the form

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k} + \phi_k (s_k^T B_k s_k) v_k v_k^T$$

• ϕ_k is a scalar function. $v_k = \left(\frac{y_k}{y_k^T s_k} - \frac{B_k s_k}{s_k^T B_k s_k}\right)$

It is a linear combination of BFGS and DFP B^{Broyden}_{k+1} = (1 − φ)B^{BFGS}_{k+1} + φB^{DFP}_{k+1}

It is a *restricted Broyden class* if φ∈[0,1]

More on the Broyden class

• The SR1 is also belong to the Broyden class with

$$\phi_k = \frac{s_k^T y_k}{s_k^T y_k - s_k^T B_k s_k}$$

- But may not be belong to the restricted Broyden class.
- If $\phi_{k+1} \ge 0$ and B_k is positive definite, then B_k is positive definite.

Convergence of BFGS

• Global convergence

For any spd B_0 and any x_0 , if f is twice continuously differentiable and the working set is convex with *properly bounded* Hessian, then the BFGS converges to the minimizer x^* of f.

• Convergent rate

If *f* is twice continuously differentiable and $\nabla^2 f$ is Lipschitz continuous near *x**, and $\sum_{k=1}^{\infty} ||x_k - x^*|| < \infty$

then the BFGS converges superlinearly