CS5321
 Numerical Optimization

06 Quasi-Newton Methods

Hessian matrix

- The Hessian matrix B is needed in computing Newton's direction $p_{k}=-B_{k}{ }^{-1} \nabla f_{k}$.
- What needed is the inverse multiplying a vector.
- Approximate result maybe good enough in use.
- Quasi-Newton: use gradient vector to approximate Hessian
- DFP and BFGS updating formula
- SR1 (Symmetric Rank 1 update) method
- Broyden class

The secant formula

- Suppose we have Hessian B_{k} at current point x_{k}
- Next point is $x_{k+1}=x_{k}+\alpha_{k} p_{k}$
- The model at x_{k+1} is $m_{k+1}(p)=f_{k+1}+g_{k+1}^{T} p+\frac{1}{2} p^{T} B_{k+1} p$
- Assume $\nabla m_{k+1}\left(-\alpha_{k} p_{k}\right)=g_{k+1}-\alpha_{k} B_{k+1} p_{k}=g_{k}$ and let $s_{k}=x_{k+1}-x_{k}=\alpha_{k} p_{k} \quad$ and $y_{k}=g_{k+1}-g_{k}$
- Then we have the secant formula

$$
B_{k+1} s_{k}=y_{k}
$$

- Also require B_{k+1} to be spd $s_{k}^{T} B_{k+1} s_{k}=s_{k}^{T} y_{k}>0$

DFP updating formula

- The problem of approximating B_{k+1} becomes

$$
\begin{gathered}
\min _{B}\left\|B-B_{k}\right\| \\
\text { subject to } B=B^{T}, B s_{k}=y_{k}
\end{gathered}
$$

- With some special norm, the solution is

$$
\begin{gathered}
B_{k+1}=\left(I-\rho_{k} y_{k} s_{k}^{T}\right) B_{k}\left(I-\rho_{k} s_{k} y_{k}^{T}\right)+\rho_{k} y_{k} y_{k}^{T} \\
\rho_{k}=1 / y_{k}^{T} s_{k}
\end{gathered}
$$

- This is the DFP updating formula
- Davidon, Fletcher and Powell

BFGS updating formula

- Let $H_{k}=B_{k}^{-1}$. Similar results can be obtained

$$
\begin{gathered}
\min _{H}\left\|H-H_{k}\right\| \\
\text { subject to } H=H^{T}, H y_{k}=s_{k}
\end{gathered}
$$

- The solution is

$$
\begin{gathered}
H_{k+1}=\left(I-\rho_{k} s_{k} y_{k}^{T}\right) H_{k}\left(I-\rho_{k} y_{k} s_{k}^{T}\right)+\rho_{k} s_{k} s_{k}^{T} \\
\rho_{k}=1 / y_{k}^{T} s_{k}
\end{gathered}
$$

- This is the BFGS updating formula
- Broyden, Fletcher, Goldfarb, and Shanno

More on BFGS

- The initial H_{0} need be constructed
- Finite difference or automatic differentiation (chap 8)
- Using identity matrix or $\left(y_{k}^{T} s_{k} / y_{k}^{T} y_{k}\right) I$
- Hessian B_{k} can be constructed via the Sherman-Morrison-Woodbury formula (rank 2 update)

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}
$$

- If H_{k} is positive definite, H_{k+1} is positive definite.

The SR1 method

- Desire a symmetric rank 1 update, $B_{k+1}=\mathrm{B}_{k}+\rho v \nu^{\mathrm{T}}$, that satisfies the secant constrain: $y_{k}=B_{k+1} s_{k}$.

$$
y_{k}=\left(B_{k}+\rho v v^{T}\right) s_{k}=B_{k} s_{k}+\left(\rho v^{T} s_{k}\right) v
$$

- Vector v is parallel to $\left(y_{k}-B_{k} s_{k}\right)$. Let $v=\delta\left(y_{k}-B_{k} s_{k}\right)$
- Substitute back to the secant constrain

$$
\rho=\operatorname{sign}\left[s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)\right], \pm=\S\left[s_{k}^{T}\left(y_{k}-B_{k} s_{k}\right)\right]^{-1 / 2}
$$

- Let $z_{k}=y_{k}-B_{k} s_{k}$. The SR1 is $B_{k+1}=B_{k}+\frac{z_{k} z_{k}^{T}}{z_{k}^{T} s_{k}}$

More on the SR1

- Let $w_{k}=s_{k}-H_{k} y_{k}$. By Sherman-Morrison formula,

$$
H_{k+1}=H_{k}+\frac{w_{k} w_{k}^{T}}{w_{k}^{T} y_{k}}
$$

- If $y_{k}=B_{k} s_{k}, B_{k+1}=B_{k}$.
- If $y_{k} \neq B_{k} s_{k}$ but $\left(y_{k}-B_{k} s_{k}\right)^{\mathrm{T}} S_{k}=0$, there is no the SR1.
- If $\left(y_{k}-B_{k} s_{k}\right)^{\mathrm{T}} s_{k} \approx 0$, the SR1 is numerical instable.
- Use $B_{k+1}=B_{k}$.
- In practice, the B_{k} generated by the SR1 satisfies

$$
\lim _{k \rightarrow \infty}\left\|B_{k}-\nabla^{2} f\left(x^{*}\right)\right\|=0
$$

The Broyden class

- The Broyden class is a family of quasi-Newton updating formulas that have the form

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{T} B_{k}}{s_{k}^{T} B_{k} s_{k}}+\frac{y_{k} y_{k}^{T}}{y_{k}^{T} s_{k}}+\phi_{k}\left(s_{k}^{T} B_{k} s_{k}\right) v_{k} v_{k}^{T}
$$

- ϕ_{k} is a scalar function. $v_{k}=\left(\frac{y_{k}}{y_{k}^{T} s_{k}}-\frac{B_{k} s_{k}}{s_{k}^{T} B_{k} s_{k}}\right)$
- It is a linear combination of BFGS and DFP

$$
B_{k+1}^{\text {Broyden }}=(1-\phi) B_{k+1}^{\mathrm{BFGS}}+\phi B_{k+1}^{\mathrm{DFP}}
$$

- It is a restricted Broyden class if $\phi \in[0,1]$

More on the Broyden class

- The SR1 is also belong to the Broyden class with

$$
\phi_{k}=\frac{s_{k}^{T} y_{k}}{s_{k}^{T} y_{k}-s_{k}^{T} B_{k} s_{k}}
$$

- But may not be belong to the restricted Broyden class.
- If $\phi_{k+1} \geq 0$ and B_{k} is positive definite, then B_{k} is positive definite.

Convergence of BFGS

- Global convergence

For any spd B_{0} and any x_{0}, if f is twice continuously differentiable and the working set is convex with properly bounded Hessian, then the BFGS converges to the minimizer x * of f.

- Convergent rate

If f is twice continuously differentiable and $\nabla^{2} f$ is
Lipschitz continuous near x^{*}, and $\sum_{k=1}^{\infty}\left\|x_{k}-x^{*}\right\|<\infty$
then the BFGS converges superlinearly

