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CS5321

Numerical Optimization

05 Conjugate Gradient Methods
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Conjugate gradient methods

� For convex quadratic problems, 

� the steepest descent method is slow in convergence.

� the Newton’s method is expensive in solving Ax=b.

� the conjugate gradient method solves Ax=b iteratively.

� Outline

� Conjugate directions

� Linear conjugate gradient method 

� Nonlinear conjugate gradient method
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Quadratic optimization problem

� Consider the quadratic optimization problem

� A is symmetric positive definite

� The optimal solution is at ∇f (x) = 0

� Define r(x) = ∇f (x) = Ax − b (the residual). 

� Solve Ax=b without inverting A. (Iterative method)

∇(1
2
xTAx− bTx) = Ax− b = 0

min f(x) = 1

2
xTAx− bTx
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Steepest descent+line search

1. Given an initial guess x0.

2. The search direction: pk= −∇fk= −rk= b −Axk

3. The optimal step length:

� The optimal solution is

4. Update xk+1= xk + αkpk. Goto 2.

min
α
f(xk + αkpk)

αk = −
rT
k
rk

pT
k
Apk

min f(x) = 1

2
xTAx− bTx
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Conjugate direction

� For a symmetric positive definite matrix A, one 

can define A-inner-product as 〈x, y〉A= xTAy.

� A-norm is defined as 

� Two vectors x and y are A-conjugate for a 

symmetric positive definite matrix A if xTAy=0

� x and y are orthogonal under A-inner-product.

� The conjugate directions are a set of search 

directions {p0, p1, p2,…}, such that piApj=0 for 

any i ≠ j.

‖x‖A =
√
xTAx
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Example
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Conjugate gradient

� A better result can be obtained if the current 

search direction combines the previous one

pk+1= −rk + βkpk

� Let pk+1 be A-conjugate to pk. (                       )

βk =
pT
k
Ark

pT
k
Apk

=
rT
k+1
rk+1

rT
k
rk

pTk+1Apk = −rTk Apk + βkpTkApk = 0

pT
k+1

Apk = 0
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The linear CG algorithm

� With some linear algebra, the algorithm can 

be simplified as

1. Given x0, r0=Ax0−b, p0= −r0

2. For k = 0,1,2,… until ||rk|| = 0

αk = rTk rk/p
T

kApk

xk+1 = xk + αkpk

rk+1 = rk + αkApk

βk+1 = rTk+1rk+1/r
T

k rk

pk+1 = −rk+1 + βk+1pk
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Properties of linear CG

� One matrix-vector multiplication per iteration.

� Only four vectors are required. (xk, rk, pk, Apk)

� Matrix A can be stored implicitly 

� The CG guarantees convergence in r iterations, 

where r is the number of distinct eigenvalues of A

� If A has eigenvalues λ1 ≤ λ2 ≤ … ≤ λn, 

‖xk+1 − x∗‖2A ≤
(
λn−k − λ1
λn−k + λ1

)2
‖x0 − x∗‖2A
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CG for nonlinear optimization

The Fletcher-Reeves method

1. Given x0. Set p0= −∇f0,

2. For k = 0,1,…, until ∇f0=0

� Compute optimal step length αk and set xk+1=xk+ αkpk

� Evaluate ∇fk+1

βk+1 =
∇fT

k+1
∇fk+1

∇fT
k
∇fk

pk+1 = −∇fk+1 + βk+1pk
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Other choices of ββββ

� Polak-Ribiere: 

� Hestens-Siefel:

� Y.Dai and Y.Yuan

� (1999)

� WW.Hager and H.Zhang

� (2005)

βk+1 =
∇fT

k+1
(∇fk+1 − fk)
∇fT

k
∇fk

βk+1 =
∇fT

k+1
(∇fk+1 − fk)

(∇fk+1 −∇fk)T pk

βk+1 =

(
yk − 2pk

‖yk‖2
yT
k
pk

)T ∇fk+1
yT
k
pk

βk+1 =
‖∇fk+1‖2

(∇fk+1 −∇fk)T pk


