05 Conjugate Gradient Methods
Conjugate gradient methods

- For convex quadratic problems,
 - the steepest descent method is slow in convergence.
 - the Newton’s method is expensive in solving $Ax=b$.
 - the conjugate gradient method solves $Ax=b$ iteratively.

- Outline
 - Conjugate directions
 - Linear conjugate gradient method
 - Nonlinear conjugate gradient method
Quadratic optimization problem

- Consider the quadratic optimization problem

\[
\min f(x) = \frac{1}{2} x^T A x - b^T x
\]

- A is symmetric positive definite
- The optimal solution is at \(\nabla f(x) = 0 \)

\[
\nabla \left(\frac{1}{2} x^T A x - b^T x \right) = A x - b = 0
\]

- Define \(r(x) = \nabla f(x) = A x - b \) (the residual).

- Solve \(A x = b \) without inverting \(A \). (Iterative method)
Steepest descent+line search

\[\min f(x) = \frac{1}{2} x^T A x - b^T x \]

1. Given an initial guess \(x_0 \).

2. The search direction: \(p_k = -\nabla f_k = -r_k = b - Ax_k \)

3. The optimal step length: \(\min_{\alpha} f(x_k + \alpha p_k) \)

 - The optimal solution is \(\alpha_k = -\frac{r_k^T r_k}{p_k^T A p_k} \)

4. Update \(x_{k+1} = x_k + \alpha_k p_k \). Goto 2.
Conjugate direction

- For a symmetric positive definite matrix A, one can define A-inner-product as $\langle x, y \rangle_A = x^T A y$.
 - A-norm is defined as $\|x\|_A = \sqrt{x^T A x}$.
- Two vectors x and y are A-conjugate for a symmetric positive definite matrix A if $x^T A y = 0$.
 - x and y are orthogonal under A-inner-product.
- The conjugate directions are a set of search directions $\{p_0, p_1, p_2, \ldots \}$, such that $p_i A p_j = 0$ for any $i \neq j$.
Example

\[A = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]
Conjugate gradient

- A better result can be obtained if the current search direction combines the previous one
 \[p_{k+1} = -r_k + \beta_k p_k \]

- Let \(p_{k+1} \) be A-conjugate to \(p_k \).
 \(p_{k+1}^T A p_k = 0 \)

\[p_{k+1}^T A p_k = -r_k^T A p_k + \beta_k p_k^T A p_k = 0 \]

\[\beta_k = \frac{p_k^T A r_k}{p_k^T A p_k} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} \]
The linear CG algorithm

- With some linear algebra, the algorithm can be simplified as

1. Given $x_0, r_0 = Ax_0 - b, p_0 = -r_0$
2. For $k = 0, 1, 2, \ldots$ until $||r_k|| = 0$

 $\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}$

 $x_{k+1} = x_k + \alpha_k p_k$

 $r_{k+1} = r_k + \alpha_k A p_k$

 $\beta_{k+1} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$

 $p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$
Properties of linear CG

- One matrix-vector multiplication per iteration.
- Only four vectors are required. \((x_k, r_k, p_k, Ap_k)\)
 - Matrix \(A\) can be stored implicitly
- The CG guarantees convergence in \(r\) iterations, where \(r\) is the number of distinct eigenvalues of \(A\)
- If \(A\) has eigenvalues \(\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\),
 \[
 \|x_{k+1} - x^*\|_A^2 \leq \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 \|x_0 - x^*\|_A^2
 \]
CG for nonlinear optimization

The Fletcher-Reeves method

1. Given \(x_0 \). Set \(p_0 = -\nabla f_0 \),

2. For \(k = 0, 1, \ldots \), until \(\nabla f_0 = 0 \)
 - Compute optimal step length \(\alpha_k \) and set \(x_{k+1} = x_k + \alpha_k p_k \)
 - Evaluate \(\nabla f_{k+1} \)

\[
\beta_{k+1} = \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}
\]

\[
p_{k+1} = -\nabla f_{k+1} + \beta_{k+1} p_k
\]
Other choices of β

- **Polak-Ribiere:**
 $$\beta_{k+1} = \frac{\nabla f_k^T (\nabla f_{k+1} - f_k)}{\nabla f_k^T \nabla f_k}$$

- **Hestens-Siefel:**
 $$\beta_{k+1} = \frac{\nabla f_k^T (\nabla f_{k+1} - f_k)}{(\nabla f_{k+1} - \nabla f_k)^T p_k}$$

- **Y.Dai and Y.Yuan**
 $$\beta_{k+1} = \frac{\|\nabla f_{k+1}\|^2}{(\nabla f_{k+1} - \nabla f_k)^T p_k}$$
 (1999)

- **WW.Hager and H.Zhang**
 $$\beta_{k+1} = \left(y_k - 2p_k \frac{\|y_k\|^2}{y_k^T p_k} \right)^T \frac{\nabla f_{k+1}}{y_k^T p_k}$$
 (2005)