CS5321 Numerical Optimization

04 Trust Region Methods

3/19/2009

Trust region method

- 1. Solve model problem m_k . Let p_k be the solution.
- 2. Evaluate p_k and update the trust region.
- The quadratic model will be used. $\min_{\|p\| \le \Delta_k} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p$
 - $f_k = f(x_k)$, B_k is the Hessian, and g_k is the gradient.
 - Δ_k is the trust region radius

Solve model problem m_k

$$\min_{\|p\| \le \Delta_k} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p$$

- The problem is a constrained optimization
- If $||B^{-1}g|| \leq \Delta$ and *B* is positive definite, $p=-B^{-1}g$.
- Otherwise, the direction varies for different Δ.

3/19/2009

Optimal conditions

• p^* is the optimal solution if and only if it satisfies $(B+\lambda I) p^*=-g$ $\lambda(\Delta - ||p^*||)=0$

$B+\lambda I$ is positive semidefinite

- $\lambda \ge 0$. is called Largrangian modifier (chap 12)
- Assume $||B^{-1}g|| \ge \Delta_k$. for $\lambda \ge 0$. Define $\phi(\lambda) = ||-(B+\lambda I)^{-1}g|| - \Delta$ and solve $\phi(\lambda) = 0$
 - This is a univariable nonlinear equation. (chap 11)

Approximation methods

- The problem $\phi(\lambda) = ||-(B+\lambda I)^{-1}g|| \Delta = 0$ is difficult to formulate and solve
 - Can be used when the number of variables is small.
- Four approximate methods
 - 1. Cauchy point
 - 2. The dogleg method
 - 3. Two-dimensional subspace minimization
 - 4. Steihaug's algorithm (chap 7)

1. Cauchy point

- The steepest descent method + line search
- The solution is $p_k = -\tau_k \frac{\Delta_k}{\|g_k\|} g_k$ (Cauchy point) $\tau_k = \begin{cases} 1 & \text{if } g_k^T B_k g_k \leq 0 \\ \min(\|g_k\|^3 / (\Delta_k g_k^T B_k g_k, 1)) & \text{otherwise.} \end{cases}$
 - Slow convergence
 - Easy to compute
 - Use as a reference direction
 - More on this in chap 5

2. Dogleg method

- Require B_k to be positive definite.
- Use $p(\tau)$ to approximate the optimal trajectory

$$p(\tau) = \begin{cases} \tau p^U & 0 \le \tau \le 1\\ p^U + (\tau - 1)(p^B - p^U) & 1 < \tau \le 2 \end{cases}$$

• p^{U} is the Cauchy point

$$p^U = -\frac{g^T g}{g^T B g} g$$

• p^{B} is the Newton's direction $p^{B} = -B^{-1}g$

3. 2-dim subspace minimization

• Use the linear combination of g and $B^{-1}g$

 $\min_{\|p\| \le \Delta_k} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p \text{ s.t. } p \in \text{span}\{g, B^{-1}g\}$

- Matrix *B* can be indefinite.
 - Find α such that $(B + \alpha I)$ is positive definite
 - If $|| (B + \alpha I)^{-1}g || \le \Delta_k$, $p = -(B + \alpha I)^{-1}g + v$ such that $v^T(B + \alpha I)^{-1}g \le 0$.
 - Otherwise, $p \in \text{span}\{g, (B + \alpha I)^{-1}g\}$

Evaluation function

- Solution p_k is evaluated by $\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$
 - Numerator $f(x_k) f(x_k + p_k)$ is the *actual* reduction
 - Denominator $m_k(0) m(p_k)$ is the *predicted* reduction
 - If ρ_k is close to 1, m_k is a good model. In this case, if $||p_k|| = \Delta_k$, increase Δ_k .
 - If ρ_k is close to 0 or negative, shrink the range of the trust region Δ_k .

Scaling

- Poor scaled problems are sensitive to certain directions
 - Ex: $f(x, y) = 10^9 x^2 + y^2$.
- Solution 1: if knowing the scale of final solution, one can rescale the variables
- Solution 2: The trust region can be elliptical.

$$\min_{Dp \parallel \le \Delta_k} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p$$

• D is a diagonal matrix

Global convergence

• Theorem 4.5

Suppose $||B_k||$ is bounded, and *f* is bounded below on the level set $S = \{x | f(x) \le f(x_0)\}$ and Lipschitz continuously differentiable in the neighborhood of S. If

$$m_k(0) - m_k(p_k) \ge c_1 ||g_k|| \min\left(\Delta_k, \frac{||g_k||}{||B_k||}\right)$$

and $||p_k|| \le \gamma \Delta_k$ for some $c_1 \in (0,1]$ and $\gamma \ge 1$. Then

$$\lim \inf_{k \to \infty} \|g_k\| = 0$$