03 Line Search Methods
Line search method

1. Given a point x_k, find a descent direction p_k.
2. Find the step length α to minimize $f(x_k + \alpha p_k)$

- A descent direction p_k means the directional derivative $\nabla f(x_k)^T p_k < 0$
- In Newton’s method, $p_k = -H_k g_k$
 - Matrix $H_k = \nabla^2 f(x_k)$ is Hessian; $g_k = \nabla f(x_k)$ is gradient
 - If H_k is positive definite, $\nabla f(x_k)^T p_k = -g_k^T H_k g_k < 0$
Modified Newton’s methods

- If the Hessian H is indefinite, ill-conditioned, or singular, the modified Newton’s methods compute the inverse of $H+E$, such that $-(H+E)^{-1}\nabla f(x_k)$ gives a descent direction.

- Matrix E can be calculated via
 1. Eigenvalue modification
 2. Diagonal shift
 3. Modified Cholesky factorization
 4. Modified symmetric indefinite factorization
1. Eigenvalue modification

- Modifying the eigenvalues of H such that H becomes positive definite
- Let $H=Q\Lambda Q^T$ be the spectral decomposition of H.
 - $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ where $\lambda_1 \geq \ldots \geq \lambda_i > 0 \geq \lambda_{i+1} \ldots \geq \lambda_n$
 - Define $\Delta \Lambda = \text{diag}(0, \ldots, 0, \Delta \lambda_{i+1}, \ldots, \Delta \lambda_n)$ s.t. $\Lambda + \Delta \Lambda > 0$
 - Matrix $E = Q\Delta \Lambda Q^T$
- Problem: the eigenvalue decomposition is too expensive.
2. Diagonal shift

- If $\Delta \Lambda = \text{diag}(\tau, \ldots, \tau) = \tau I$, $E = Q \Delta \Lambda Q^T = \tau QQ^T = \tau I$
 - To make $H+E$ positive definite, only need to choose $\tau > |\lambda_i|$, where λ_i is minimum negative eigenvalues of H.

- How to know τ without explicitly performing the eigenvalue decomposition?
 - If H is positive definite, H has Cholesky decomposition.
 - Guess a shift τ and try Cholesky decomposition on $H+\tau I$. If fails, increase τ and try again, until succeed
 - The choice of increment is heuristic.
3. Modified Cholesky factorization

- A SPD matrix H can be decomposed as $H = LDL^T$.
 - L is unit triangular matrix
 - D is diagonal with positive elements
 - Relations to Cholesky decomp $H = MM^T$ is $M = LD^{1/2}$
- If A is not SPD, modify the elements of L and D during the decomposition such that
 - $D(i,i) \geq \delta > 0$ and $L(i,j)D(i,i)^{1/2} \leq \beta$.
- The decomposition can be used in solving linear systems.
4. Modified symmetric indefinite factorization

- Symmetric indefinite factorization $PHP^T = LBL^T$
 - better numerical stability than Cholesky decomposition
 - Matrix B has the same inertia as H.
 - The inertia of a matrix is the number of positive, zero, and negative eigenvalues of the matrix.
 - Use eigenvalue modification to B st. $B+F$ is positive definite
 - The eigen-decomp of B is cheap since it is block diagonal
 - Thus, $P(H+E)P^T = L(B+F)L^T$ and $E = P^TLFL^TP$
Step length α

- Assume p_k is a descent direction. Find an optimal step length α.
 \[
 \min_{\alpha > 0} \phi(\alpha) = f(x_k + \alpha p_k)
 \]

- The minimization problem may be difficult to solve. (nonlinear)

- Alternative method is to find an α that satisfies some conditions
 - Wolfe conditions
 - Goldstein conditions
The Goldstein conditions

- With $0 < c < 1/2$,

\[
 f(x_k) + (1 - c)\alpha \nabla f_k^T p_k \leq f(x_k + \alpha p_k) \\
 \leq f(x_k) + c\alpha \nabla f_k^T p_k
\]

- Suitable for Newton-typed methods, but not well suited for quasi-Newton methods
The Wolfe conditions

- Sufficient decrease condition: for \(c_1 \in (0,1) \)
 \[
f(x_k + \alpha p_k) \leq f(x_k) + c_1 \alpha \nabla f(x_k)^T p_k
 \]

- Curvature condition: for \(c_2 \in (0, c_1) \)
 \[
 \nabla f(x_k + \alpha p_k)^T p_k \geq c_2 \nabla f(x_k)^T p_k
 \]
 - Usually choose \(c_2 = 0.9 \) for Newton’s method and \(c_2 = 0.1 \) for conjugate gradient method
The Wolfe conditions

The Coldstein conditions
The strong Wolfe conditions

- Limit the range of $\phi'(\alpha_k)$ from both sides

\[
\begin{align*}
 f(x_k + \alpha p_k) & \leq f(x_k) + c_1 \alpha \nabla f(x_k)^T p_k \\
 |\nabla f(x_k + \alpha p_k)^T p_k| & \leq c_2 |\nabla f(x_k)^T p_k|
\end{align*}
\]
Convergence of line search

- For a descent direction p_k and a step length α that satisfies the Wolfe condition, if f is bounded below and continuously differentiable in an open neighborhood \mathcal{N} and ∇f is Lipschitz continuous in \mathcal{N}, then

$$\cos^2 \theta_k \| \nabla f(x_k) \|^2 \rightarrow 0$$

- θ_k is the angle between p_k and $\nabla f(x_k)$
- Note that can be either $\cos \theta_k \rightarrow 0$ or $\| \nabla f(x_k) \| \rightarrow 0$
- Other two methods have similar results