CS5321
Numerical Optimization

02 Fundamental of

Unconstrained Optimization




What is a solution?

e A point x* 1s a global minimizer if f (x*)< f (x)
for all x.

e A point x* 1s a local minimizer 1f there 1s a
neighborhood N of x* such that f (x*) < f(x)
for all xe 9.
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Necessary conditions

e If x* is a local minimizer of fand V?fexists and is
continuously differentiable in an open

neighborhood of x*, then Vf (x*) = 0 and VZf (x*)
1s positive semidefinite

x* 1s called a stationary point 1f Vf (x*) = 0.
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Convexity

e When f1s convex, any local minimizer x* 1s a
global minimizer of f.

e In addition, 1f f1s differentiable, then any
stationary point x* 1s a global minimizer of /.
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Two strategies

1. Line search method (chap 3)
Given a point x,, find a descent direction p,.
Find the step length a, to minimize f (x,+a,p,)
Next pont x,,,= x,+ o, p,.

2. Trust region method (chap 4)
For a function f, construct a model function m,.
Define a trust region ®R(x,) inside which f = m,.

Solve the minimization problem: min n,(x;tp)
where p lies inside R(x,)
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Methods to find descent
directions for line search

e Method 1: the steepest descent method

e First order approximation

e Linear convergence (global convergence)
e Method 2: the Newton’s method

e Second order approximation
e Quadratic convergence (local convergence)

e Method 3: the conjugate gradient method (chap 5)

2/26/2009 6



The steepest descent method

e The steepest descent method (first order approx)

e From the Taylor’s expansion,
f(z +p) = f(xx) +p" Vf(zx)
o To minimize p!'Vf(x;), suchthat |[p| =1
p=—Vf(xr)/[IVf(zk)]
Because P V.f(zk) = [|pl[[[V f (1) cos

Minimization 1s at cos@=—1
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The Newton’s method

e The Newton’s method (second order approx)
Assume the Hessian 1s positive definite

From the Taylor’s expansion,

f(zx +p) = f(zx) +p" Vi(zk) + 50" V2 f(zy)p
The minimization of f(x,+p) 1s at Vf(zr+p) =0
Note p is the variable. f'(x,), Vf(x,), V?f(x,) are constants.

Vi(re+p) = Vf(re)+ Vif(zr)p=0

Newton’s direction is P = —(V2f(z)) 1V f(xy)
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Substitute pY = —(VZf(xr)) 'V f(zr) to

flak +p) ~ flax) +p' V(ze) + 50" V2 f(2k)p

flxk +p")
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Variations of Newton’s method

e The Hessian matrix may be indefinite, 1ll-
conditioned, or even singular.

Modified Newton’s methods. (chap 3)

e The computation of Hessian 1s expensive
Quasi-Newton methods (chap 6)

e The inverse of Hessian 1s expensive
Inexact Newton’s method (chap 7)
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The conjugate gradient method

e The current search direction p, 1s a linear
combination of previous search direction p,_,and
current gradient

pr = —V f(xr) + BrPr—1

e Scalar £, 1s given such that p, and p,_; are
conjugate.
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Models for trust-region method

e Linear model:
f(ze +p) = f(zr) +p' Vf(zk)

e Quadratic model:

flzk +p) = fzr) + "' V(z) + 50" V2 f(xk)p

e All variations of Newton’s method can be applied.
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Trust region step
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Figure 4.1
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Trust-region and line search steps.
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