CS5321 Numerical Optimization

02 Fundamental of Unconstrained Optimization

What is a solution?

- A point x^* is a global minimizer if $f(x^*) \le f(x)$ for all x.
- A point x^* is a local minimizer if there is a neighborhood \mathcal{N} of x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}$.

Necessary conditions

- If x* is a local minimizer of f and ∇²f exists and is continuously differentiable in an open neighborhood of x*, then ∇f (x*) = 0 and ∇²f (x*) is positive semidefinite
 - x^* is called a *stationary point* if $\nabla f(x^*) = 0$.

Convexity

- When *f* is convex, any local minimizer *x** is a global minimizer of *f*.
- In addition, if *f* is differentiable, then any stationary point *x** is a global minimizer of *f*.

Two strategies

- 1. Line search method (chap 3)
 - a) Given a point x_k , find a descent direction p_k .
 - b) Find the step length α_k to minimize $f(x_k + \alpha_k p_k)$
 - c) Next point $x_{k+1} = x_k + \alpha_k p_k$.
- 2. Trust region method (chap 4)
 - a) For a function f, construct a model function m_k .
 - b) Define a trust region $\mathcal{R}(x_k)$ inside which $f \approx m_k$.
 - c) Solve the minimization problem: $\min_p m_k(x_k+p)$ where p lies inside $\mathcal{R}(x_k)$

Methods to find descent directions for line search

- Method 1: the steepest descent method
 - First order approximation
 - Linear convergence (global convergence)
- Method 2: the Newton's method
 - Second order approximation
 - Quadratic convergence (local convergence)
- Method 3: the conjugate gradient method (chap 5)

The steepest descent method

The steepest descent method (first order approx)From the Taylor's expansion,

$$f(x_k + p) \approx f(x_k) + p^T \nabla f(x_k)$$

- To minimize $p^T \nabla f(x_k)$, such that ||p|| = 1 $p = -\nabla f(x_k) / ||\nabla f(x_k)||$
 - Because $p^T \nabla f(x_k) = \|p\| \|\nabla f(x_k)\| \cos \theta$ Minimization is at $\cos \theta = -1$

The Newton's method

- The Newton's method (second order approx)
 - Assume the Hessian is positive definite
 - From the Taylor's expansion, $f(x_k + p) \approx f(x_k) + p^T \nabla f(x_k) + \frac{1}{2} p^T \nabla^2 f(x_k) p$
 - The minimization of $f(x_k+p)$ is at $\nabla f(x_k+p) = 0$
 - Note p is the variable. $f(x_k)$, $\nabla f(x_k)$, $\nabla^2 f(x_k)$ are constants.

$$\nabla f(x_k + p) \approx \nabla f(x_k) + \nabla^2 f(x_k)p = 0$$

• Newton's direction is $p^N = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$

Substitute $p^N = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ to $f(x_k + p) \approx f(x_k) + p^T \nabla f(x_k) + \frac{1}{2} p^T \nabla^2 f(x_k) p$ $f(x_k + p^N) \approx f(x_k) + (p^N)^T \nabla f(x_k) + \frac{1}{2} (p^N)^T \nabla^2 f(x_k) p^N$ $= f(x_k) - \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k) +$ $\frac{1}{2}\nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ $= f(x_k) - \frac{1}{2} \nabla f(x_k)^T (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ $\leq f(x_k)$

2/26/2009

Variations of Newton's method

- The Hessian matrix may be indefinite, illconditioned, or even singular.
 - Modified Newton's methods. (chap 3)
- The computation of Hessian is expensive
 - Quasi-Newton methods (chap 6)
- The inverse of Hessian is expensive
 - Inexact Newton's method (chap 7)

The conjugate gradient method

 The current search direction p_k is a linear combination of previous search direction p_{k-1} and current gradient

$$p_k = -\nabla f(x_k) + \beta_k p_{k-1}$$

• Scalar β_k is given such that p_k and p_{k-1} are *conjugate*.

Models for trust-region method

• Linear model:

$$f(x_k + p) \approx f(x_k) + p^T \nabla f(x_k)$$

• Quadratic model:

$$f(x_k + p) \approx f(x_k) + p^T \nabla f(x_k) + \frac{1}{2} p^T \nabla^2 f(x_k) p$$

• All variations of Newton's method can be applied.

Figure 4.1 Trust-region and line search steps.