CS5321
 Numerical Optimization

02 Fundamental of
Unconstrained Optimization

What is a solution?

- A point x^{*} is a global minimizer if $f\left(x^{*}\right) \leq f(x)$ for all x.
- A point x^{*} is a local minimizer if there is a neighborhood \mathcal{N} of x^{*} such that $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{N}$.

Necessary conditions

- If x^{*} is a local minimizer of f and $\nabla^{2} f$ exists and is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite
- x^{*} is called a stationary point if $\nabla f\left(x^{*}\right)=0$.

Convexity

- When f is convex, any local minimizer x^{*} is a global minimizer of f.
- In addition, if f is differentiable, then any stationary point x^{*} is a global minimizer of f.

Two strategies

1. Line search method (chap 3)
a) Given a point x_{k}, find a descent direction p_{k}.
b) Find the step length α_{k} to minimize $f\left(x_{k}+\alpha_{k} p_{k}\right)$
c) Next point $x_{k+1}=x_{k}+\alpha_{k} p_{k}$.
2. Trust region method (chap 4)
a) For a function f, construct a model function m_{k}.
b) Define a trust region $\mathcal{R}\left(x_{\mathrm{k}}\right)$ inside which $f \approx m_{k}$.
c) Solve the minimization problem: $\min _{p} m_{k}\left(x_{k}+p\right)$ where p lies inside $\mathcal{R}\left(x_{\mathrm{k}}\right)$

Methods to find descent directions for line search

- Method 1: the steepest descent method
- First order approximation
- Linear convergence (global convergence)
- Method 2: the Newton's method
- Second order approximation
- Quadratic convergence (local convergence)
- Method 3: the conjugate gradient method (chap 5)

The steepest descent method

- The steepest descent method (first order approx)
- From the Taylor's expansion,

$$
f\left(x_{k}+p\right) \approx f\left(x_{k}\right)+p^{T} \nabla f\left(x_{k}\right)
$$

- To minimize $p^{T} \nabla f\left(x_{k}\right)$, such that $\|p\|=1$

$$
p=-\nabla f\left(x_{k}\right) /\left\|\nabla f\left(x_{k}\right)\right\|
$$

- Because $p^{T} \nabla f\left(x_{k}\right)=\|p\|\left\|\nabla f\left(x_{k}\right)\right\| \cos \theta$ Minimization is at $\cos \theta=-1$

The Newton's method

- The Newton's method (second order approx)
- Assume the Hessian is positive definite
- From the Taylor's expansion,

$$
f\left(x_{k}+p\right) \approx f\left(x_{k}\right)+p^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} p^{T} \nabla^{2} f\left(x_{k}\right) p
$$

- The minimization of $f\left(x_{k}+p\right)$ is at $\nabla f\left(x_{k}+p\right)=0$
- Note p is the variable. $f\left(x_{k}\right), \nabla f\left(x_{k}\right), \nabla^{2} f\left(x_{k}\right)$ are constants.

$$
\nabla f\left(x_{k}+p\right) \approx \nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right) p=0
$$

- Newton's direction is $p^{N}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$

Substitute $p^{N}=-\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)$ to

$$
\begin{aligned}
f\left(x_{k}+p\right) \approx & f\left(x_{k}\right)+p^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} p^{T} \nabla^{2} f\left(x_{k}\right) p \\
f\left(x_{k}+p^{N}\right) \approx & f\left(x_{k}\right)+\left(p^{N}\right)^{T} \nabla f\left(x_{k}\right)+\frac{1}{2}\left(p^{N}\right)^{T} \nabla^{2} f\left(x_{k}\right) p^{N} \\
= & f\left(x_{k}\right)-\nabla f\left(x_{k}\right)^{T}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right)+ \\
& \frac{1}{2} \nabla f\left(x_{k}\right)^{T}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \\
= & f\left(x_{k}\right)-\frac{1}{2} \nabla f\left(x_{k}\right)^{T}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \\
\leq & f\left(x_{k}\right)
\end{aligned}
$$

Variations of Newton's method

- The Hessian matrix may be indefinite, illconditioned, or even singular.
- Modified Newton's methods. (chap 3)
- The computation of Hessian is expensive
- Quasi-Newton methods (chap 6)
- The inverse of Hessian is expensive
- Inexact Newton's method (chap 7)

The conjugate gradient method

- The current search direction p_{k} is a linear combination of previous search direction p_{k-1} and current gradient

$$
p_{k}=-\nabla f\left(x_{k}\right)+\beta_{k} p_{k-1}
$$

- Scalar β_{k} is given such that p_{k} and p_{k-1} are conjugate.

Models for trust-region method

- Linear model:

$$
f\left(x_{k}+p\right) \approx f\left(x_{k}\right)+p^{T} \nabla f\left(x_{k}\right)
$$

- Quadratic model:

$$
f\left(x_{k}+p\right) \approx f\left(x_{k}\right)+p^{T} \nabla f\left(x_{k}\right)+\frac{1}{2} p^{T} \nabla^{2} f\left(x_{k}\right) p
$$

- All variations of Newton's method can be applied.

Figure 4.1 Trust-region and line search steps.

