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CS5321

Numerical Optimization

02 Fundamental of 

Unconstrained Optimization
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What is a solution?

� A point x* is a global minimizer if f (x*)≤ f (x) 

for all x.

� A point x* is a local minimizer if there is a 

neighborhood N of x* such that f (x*) ≤ f (x)  

for all x∈N.
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Necessary conditions

� If x* is a local minimizer of f and ∇2f exists and is 

continuously differentiable in an open 

neighborhood of x*, then ∇f (x*) = 0 and ∇2f (x*) 

is positive semidefinite

� x* is called a stationary point if ∇f (x*) = 0.
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Convexity

� When f is convex, any local minimizer x* is a 

global minimizer of f.

� In addition, if  f is differentiable, then any 

stationary point x* is a global minimizer of f.
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Two strategies

1. Line search method (chap 3)

a) Given a point xk,  find a descent direction pk.

b) Find the step length αk to minimize f (xk+αkpk)

c) Next point xk+1= xk+ αkpk.

2. Trust region method (chap 4)

a) For a function f, construct a model function mk.

b) Define a trust region R(xk) inside which f  ≈ mk.

c) Solve the minimization problem: minpmk(xk+p) 
where p lies inside R(xk) 
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Methods to find descent 

directions for line search 

� Method 1: the steepest descent method

� First order approximation

� Linear convergence (global convergence)

� Method 2: the Newton’s method

� Second order approximation

� Quadratic convergence (local convergence)

� Method 3: the conjugate gradient method (chap 5)
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The steepest descent method

� The steepest descent method (first order approx)

� From the Taylor’s expansion, 

� To minimize ,  such that

� Because

Minimization is at cosθ =−1

pT∇f(xk)

p = −∇f(xk)/‖∇f(xk)‖

‖p‖ = 1

pT∇f(xk) = ‖p‖‖∇f(xk)‖ cos θ

f(xk + p) ≈ f(xk) + p
T∇f(xk)
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The Newton’s method

� The Newton’s method (second order approx)

� Assume the Hessian is positive definite

� From the Taylor’s expansion,

� The minimization of  f (xk+p) is at

� Note p is the variable. f (xk), ∇f (xk), ∇
2f (xk) are constants.

� Newton’s direction is

f(xk + p) ≈ f(xk) + p
T∇f(xk) +

1

2
pT∇2f(xk)p

∇f(xk + p) = 0

∇f(xk + p) ≈ ∇f(xk) +∇
2f(xk)p = 0

pN = −(∇2f(xk))
−1∇f(xk)
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Substitute                                             topN = −(∇2f(xk))
−1∇f(xk)

f(xk + p
N ) ≈ f(xk) + (p

N )T∇f(xk) +
1

2
(pN )T∇2f(xk)p

N

= f(xk)−∇f(xk)
T (∇2f(xk))

−1∇f(xk) +

1

2
∇f(xk)

T (∇2f(xk))
−1∇f(xk)

= f(xk)−
1

2
∇f(xk)

T (∇2f(xk))
−1∇f(xk)

≤ f(xk)

f(xk + p) ≈ f(xk) + p
T∇f(xk) +

1

2
pT∇2f(xk)p
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Variations of Newton’s method

� The Hessian matrix may be indefinite, ill-

conditioned, or even singular.

� Modified Newton’s methods. (chap 3)

� The computation of Hessian is expensive

� Quasi-Newton methods (chap 6)

� The inverse of Hessian is expensive

� Inexact Newton’s method (chap 7)
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The conjugate gradient method

� The current search direction pk is a linear 

combination of previous search direction pk-1and 

current gradient

� Scalar βk is given such that pk and pk-1 are 

conjugate. 

pk = −∇f(xk) + βkpk−1
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Models for trust-region method

� Linear model:

� Quadratic model:

� All variations of Newton’s method can be applied.

f(xk + p) ≈ f(xk) + p
T∇f(xk)

f(xk + p) ≈ f(xk) + p
T∇f(xk) +

1

2
pT∇2f(xk)p
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