CS5321
Numerical Optimization

01 Introduction
Class information

- Class webpage: http://www.cs.nthu.edu.tw/~cherung/cs5321
- Text and reference books:
 - Numerical Methods for Unconstrained Optimization and Nonlinear Equations, J. Dennis and R. Schnabel
- TA: 王治權 pponywong@gmail.com
Grading

- Class notes (50%)
 - Using latex to write one class note.
 - Peer review system
 - You must review others’ notes and give comments
 - The grade is given on both works (30%-20%)

- Project (40%)
 - Applications, software survey, implementations
 - Proposal (10%), presentation(10%), and report (20%)

- Class attendance (10%)
Outline of class

- Introduction
 - Background
- Unconstrained optimization
 - Fundamental of unconstrained optimization
 - Line search methods
 - Trust region methods
 - Conjugate gradient methods
 - Quasi-Newton methods
 - Inexact Newton methods
Outline of class-continue

- Linear programming
 - The simplex method
 - The interior point method

- Constrained optimization
 - Optimality conditions
 - Quadratic programming
 - Penalty and augmented Lagrangian methods
 - Active set methods
 - Interior point methods
Optimization Tree
Classification

- Minimization or maximization
- Continuous vs. discrete optimization
- Constrained and unconstrained optimization
- Linear and nonlinear programming
- Convex and non-convex problems
- Global and local solution
Affine, convex, and cones

\[x = \sum_{i=1}^{p} \lambda_i x_i = \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_p x_p \]

where \(x_i \in \mathbb{R}^n \) and \(\lambda_i \in \mathbb{R} \).

- \(x \) is a linear combination of \(\{x_i\} \)
- \(x \) is an affine combination of \(\{x_i\} \) if
 \[\sum_{i=1}^{p} \lambda_i = 1 \]
 \[\lambda_i \geq 0 \]
- \(x \) is a conical combination of \(\{x_i\} \) if
 \[\sum_{i=1}^{p} \lambda_i = 1, \lambda_i \geq 0 \]
- \(x \) is a convex combination of \(\{x_i\} \) if
• linear combination

• affine combination

• conical combination

• convex combination
Convex function

- A function f is convex if for $\alpha \in [0,1]$
 \[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)
 \]

- A function f is concave if $-f$ is convex
Some calculus

- Rate of convergence
- Lipschitz continuity
- Single valued function
 - Derivatives and Hessian
 - Mean value theorem and Taylor’s theorem
- Vector valued function
 - Derivatives and Jacobian
Rate of convergence

- Let \(\{x_k | x_k \in \mathbb{R}^n \} \) be a sequence converge to \(x^* \)
 - The convergence is Q-linear if for a constant \(r \in (0, 1) \)
 \[
 \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \leq r
 \]
 - The convergence is Q-superlinear if
 \[
 \lim_{{k \to \infty}} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0
 \]
 - The convergence is \(p \) Q-order if for a constant \(M \)
 \[
 \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^{p}} \leq M
 \]
A function f is said to be Lipschitz continuous on some set \mathcal{N} if there is a constant $L > 0$ such that

$$\| f(x) - f(y) \| \leq L \| x - y \| \text{ for all } x, y \in \mathcal{N}$$

If function f and g are Lipschitz continuous on \mathcal{N}, $f + g$ and fg are Lipschitz continuous on \mathcal{N}.
Derivatives

- For a single valued function $f(x_1,\ldots,x_n): \mathbb{R}^n \to \mathbb{R}$
 - Partial derivative of x_i: \[\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x + he_i) - f(x)}{h} \]
 - Gradient of f is \[\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \]
 - Directional derivatives: for $||p|| = 1$
 \[D(f(x), p) = \lim_{h \to 0} \frac{f(x + hp) - f(x)}{h} = \nabla f(x)^T p. \]
Hessian

- In some sense of the second derivative of f

$$\nabla^2 f(x) = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\
\frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x)
\end{pmatrix}$$

- If f is twice continuously differentiable, Hessian is symmetric.
Taylor’s theorem

- Mean value theorem: for $\alpha \in (0, 1)$

$$f(x + p) = f(x) + \nabla f(x + \alpha p)^T p$$

- Taylor’s theorem: for $\alpha \in (0, 1)$

$$f(x + p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x + \alpha p)p$$
Vector valued function

- For a vector valued function $r: \mathbb{R}^n \rightarrow \mathbb{R}^m$

- The Jacobian of r at x is

$$J(x) = \begin{pmatrix}
\frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\
\frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x)
\end{pmatrix} = \begin{pmatrix}
\nabla f_1(x)^T \\
\nabla f_2(x)^T \\
\vdots \\
\nabla f_m(x)^T
\end{pmatrix}$$
Some linear algebra

- Vectors and matrix
- Eigenvalue and eigenvector
- Singular value decomposition
- LU decomposition and Cholesky decomposition
- Subspaces and QR decomposition
- Sherman-Morrison-Woodbury formula
Vector

- A column vector $x \in \mathbb{R}^n$ is denoted as $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$
- The transpose of x is $x^T = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}$
- The inner product of $x, y \in \mathbb{R}^n$ is $x^T y = \sum_{i=1}^{n} x_i y_i$
- Vector norm
 - 1-norm $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
 - 2-norm $\|x\|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
 - ∞-norm $\|x\|_\infty = \max_{i=1 \ldots n} |x_i|$
Matrix

A matrix $A \in \mathbb{R}^{m \times n}$ is

$$A = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix}$$

The transpose of A is

$$A^T = \begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix}$$

Matrix A is symmetric if $A^T = A$

Matrix norm: $||A||_p = \max ||Ax||_p$ for $||x||_p = 1$, $p=1,2,\infty$
Eigenvalue and eigenvector

• A scalar λ is an eigenvalue of an $n \times n$ matrix A if there is a nonzero vector x such that $Ax = \lambda x$.
 - Vector x is called an eigenvector.

• Matrix A is symmetric positive definite (SPD) if $A^T = A$ and all its eigenvalues are positive.

• If A has n linearly independent eigenvectors, A can have the eigen-decomposition: $A = X \Lambda X^{-1}$.
 - Λ is diagonal with eigenvalues as its diagonal elements
 - Column vectors of X are corresponding eigenvectors
Spectral decomposition

- If A is real and symmetric, all its eigenvalues are real, and there are n orthogonal eigenvectors.
- The spectral decomposition of a symmetric matrix A is $A = Q\Lambda Q^T$.
 - Λ is diagonal with eigenvalues as its diagonal elements
 - Q is orthogonal, i.e. $Q^TQ = QQ^T = I$.
 - Column vectors of Q are corresponding eigenvectors.
Singular value

- The singular values of an $m \times n$ A are the square roots of the eigenvalues of $A^T A$.
- Any matrix A can have the singular value decomposition (SVD): $A = U \Sigma V^T$.
 - Σ is diagonal with singular values as its elements.
 - U and V are orthogonal matrices.
 - The column vectors of U are called left singular vectors of A; the column vectors of V is called the right singular vector of A.
LU decomposition

- The LU decomposition with pivoting of matrix A is $PA=LU$
 - P is a permutation matrix
 - L is lower triangular; U is upper triangular.

- The linear system $Ax=b$ can be solved by
 1. Perform LU decompose $PA=LU$
 2. Solve $Ly=Pb$
 3. Solve $Ux=y$
Cholesky decomposition

- For a SPD matrix A, there exists the Cholesky decomposition $P^TAP = LL^T$
 - P is a permutation matrix
 - L is a lower triangular matrix
- If A is not SPD, the LBL decomposition can be used: $P^TAP =LBL^T$
 - B is a block diagonal matrix with blocks of dimension 1 or 2.
Subspaces, QR decomposition

- The null space of an $m \times n$ matrix A is
 \[\text{Null}(A) = \{ w \mid Aw = 0, w \neq 0 \} \]
- The range of A is $\text{Range}(A) = \{ w \mid w = Av, \forall v \}$.
- Fundamental of linear algebra:
 \[\text{Null}(A) \oplus \text{Range}(A^T) = \mathbb{R}^n \]
- Matrix A has the QR decomposition $AP = QR$
 - P is permutation matrix; Q is an orthogonal matrix; R is an upper triangular matrix.
Singularity and ill-conditioned

- An $n \times n$ matrix A is singular (noninvertible) iff
 - A has 0 eigenvalues
 - A has 0 singular values
 - The null space of A is not empty
 - The determinant of A is zero
- The condition number of A is $\kappa(A) = \|A\| \|A^{-1}\|$
 - A is ill-conditioned if it has a large condition number.
Sherman-Morrison-Woodbury formula

- For a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, if a rank-one update of $\hat{A} = A + uv^T$ is also nonsingular,

\[
\hat{A}^{-1} = A^{-1} - \frac{A^{-1}uv^T A^{-1}}{1 + v^T A^{-1} u}.
\]

- For matrix $U, V \in \mathbb{R}^{n \times p}$, $1 \leq p \leq n$, if $\hat{A} = A + UV^T$ is nonsingular,

\[
\hat{A}^{-1} = A^{-1} - A^{-1}U(I + V^TA^{-1}U)^{-1}VTA^{-1}.
\]