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CS5321 

Numerical Optimization

01 Introduction
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Class information

� Class webpage: 
http://www.cs.nthu.edu.tw/∼cherung/cs5321

� Text and reference books:

� Numerical optimization, Jorge Nocedal and Stephen J. 
Wright (http://www.mcs.anl.gov/otc/Guide)

� Linear and Nonlinear Programming, Stephen G. Nash 
and Ariela Sofer (1996, 2005)

� Numerical Methods for Unconstrained Optimization 
and Nonlinear Equations, J. Dennis and R. Schnabel

� TA: 王治權 pponywong@gmail.com
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Grading

� Class notes (50%)

� Using latex to write one class note.

� Peer review system

� You must review others’ notes and give comments

� The grade is given on both works (30%-20%)

� Project (40%)

� Applications, software survey, implementations

� Proposal (10%), presentation(10%), and report (20%)

� Class attendance (10%)
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Outline of class

� Introduction

� Background 

� Unconstrained optimization

� Fundamental of unconstrained optimization

� Line search methods

� Trust region methods

� Conjugate gradient methods

� Quasi-Newton methods 

� Inexact Newton methods
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Outline of class-continue

� Linear programming

� The simplex method

� The interior point method 

� Constrained optimization 

� Optimality conditions

� Quadratic programming

� Penalty and augmented Largrangian methods 

� Active set methods

� Interior point methods
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Optimization Tree
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Classification

� Minimization or maximization

� Continuous vs. discrete optimization

� Constrained and unconstrained optimization

� Linear and nonlinear programming

� Convex and non-convex problems

� Global and local solution
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Affine, convex, and cones

where xi∈R
n and λi∈R .

� x is a linear combination of {xi}

� x is an affine combination of {xi} if 

� x is a conical combination of {xi} if

� x is a convex combination of {xi} if

p∑

i=1

λi = 1

λi ≥ 0
p∑

i=1

λi = 1, λi ≥ 0
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� linear combination

� conical combination

� affine combination

� convex combination
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Convex function

� A function f is convex if for α∈[0,1]

� A function f is concave if −f is convex
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Some calculus

� Rate of convergence

� Lipschitz continuity

� Single valued function

� Derivatives and Hessian

� Mean value theorem and Taylor’s theorem

� Vector valued function

� Derivatives and Jacobian



3/9/2009 12

Rate of convergence

� Let {xk|xk∈R
n} be a sequence converge to x*

� The convergence is Q-linear if for a constant r∈(0,1)

� The convergence is Q-superlinear if 

� The convergence is p Q-order if for a constant M
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Lipschitz continuity

� A function f is said to be Lipschitz continuous on 
some set N if there is a constant L>0 such that

|| f (x) − f (y)|| ≤ L ||x− y|| for all x,y∈N

� If function f and g are Lipschitz continuous on N, 

f +g and fg are Lipschitz continuous on N.
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� For a single valued function f (x1,…,xn):R
n→R

� Partial derivative of xi:

� Gradient of f is

� Directional derivatives: for ||p||=1

Derivatives
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Hessian

� In some sense of the second derivative of  f

� If f is twice continuously differentiable, Hessian is 

symmetric.



3/9/2009 16

Taylor’s theorem

� Mean value theorem: for α∈(0,1)

� Taylor’s theorem: for α∈(0,1)

f(x+ p) = f(x) +∇f(x)T p+
1

2
pT∇2f(x+ αp)p
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Vector valued function

� For a vector valued 

function r:Rn→Rm

� The Jacobian of r at x is
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Some linear algebra

� Vectors and matrix

� Eigenvalue and eigenvector

� Singular value decomposition

� LU decomposition and Cholesky decomposition

� Subspaces and QR decomposition

� Sherman-Morrison-Woodbury formula
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Vector

� A column vector x∈Rn is denoted as

� The transpose of x is 

� The inner product of x,y∈Rn is 

� Vector norm

� 1-norm

� 2-norm

� ∞-norm
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Matrix

� A matrix A∈Rm×n is 

� The transpose of A is 

� Matrix A is symmetric if AT=A

� Matrix norm: ||A||p= max||Ax||p for ||x||p=1, p=1,2,∞
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Eigenvalue and eigenvector

� A scalar λ is an eigenvalue of an n×n matrix A if 

there is a nonzero vector x such that Ax= λx. 
� Vector x is called an eigenvector.

� Matrix A is symmetric positive definite (SPD) if 

AT=A and all its eigenvalues are positive.

� If A has n linearly independent eigenvectors, A
can have the eigen-decomposition: A=XΛX −1.

� Λ is diagonal with eigenvalues as its diagonal elements

� Column vectors of X are corresponding eigenvectors
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Spectral decomposition

� If A is real and symmetric, all its eigenvalues are 

real, and there are n orthogonal eigenvectors. 

� The spectral decomposition of a symmetric matrix 

A is A=QΛQT.

� Λ is diagonal with eigenvalues as its diagonal elements

� Q is orthogonal, i.e. QTQ = QQT = I. 

� Column vectors of Q are corresponding eigenvectors.
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Singular value

� The singular values of an m×n A are the square 

roots of the eigenvalues of ATA.

� Any matrix A can have the singular value 

decomposition (SVD): A=UΣ VT.

� Σ is diagonal with singular values as its elements.

� U and V are orthogonal matrices.  

� The column vectors of U are called left singular 

vectors of A; the column vectors of V is called the right 

singular vector of A.
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LU decomposition

� The LU decomposition with pivoting of matrix A
is PA=LU

� P is a permutation matrix

� L is lower triangular; U is upper triangular.

� The linear system Ax=b can be solved by

1. Perform LU decompose PA=LU

2. Solve Ly=Pb

3. Solve Ux=y 
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Cholesky decomposition

� For a SPD matrix A, there exists the Cholesky 

decomposition PTAP = LLT

� P is a permutation matrix 

� L is a lower triangular matrix

� If A is not SPD, the LBL decomposition can be 

used: PTAP = LBLT

� B is a block diagonal matrix with blocks of dimension 

1 or 2.
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Subspaces, QR decomposition

� The null space of an m×n matrix A is 

�ull(A)={w|Aw=0,w≠0}

� The range of A is Range(A)={w|w=Av,∀v}.

� Fundamental of linear algebra: 

�ull(A) ⊕ Range(AT) = Rn

� Matrix A has the QR decomposition AP = QR
� P is permutation matrix; Q is an orthogonal matrix; 

R is an upper triangular matrix.
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Singularity and ill-conditioned

� An n×n matrix A is singular (noninvertible) iff

� A has 0 eigenvalues 

� A has 0 singular values

� The null space of A is not empty

� The determinant of A is zero

� The condition number of A is 

� A is ill-conditioned if it has a large condition number.

κ(A) = ‖A‖‖A−1‖
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Sherman-Morrison-Woodbury 

formula

� For a nonsinular matrix A∈Rn×n, if a rank-one 

update of Â =A+uvT is also nonsingular,

� For matrix U,V∈Rn×p, 1≤p≤n, if Â =A+UVT is 

nonsingular,


