CS5321
 Numerical Optimization

01 Introduction

Class information

－Class webpage：
http：／／www．cs．nthu．edu．tw／～cherung／cs5321
－Text and reference books：
－Numerical optimization，Jorge Nocedal and Stephen J． Wright（http：／／www．mcs．anl．gov／otc／Guide）
－Linear and Nonlinear Programming，Stephen G．Nash and Ariela Sofer $(1996,2005)$
－Numerical Methods for Unconstrained Optimization and Nonlinear Equations，J．Dennis and R．Schnabel
－TA：王治權 pponywong＠gmail．com

Grading

- Class notes (50\%)
- Using latex to write one class note.
- Peer review system
- You must review others' notes and give comments
- The grade is given on both works ($30 \%-20 \%$)
- Project (40\%)
- Applications, software survey, implementations
- Proposal (10\%), presentation(10\%), and report (20\%)
- Class attendance (10\%)

Outline of class

- Introduction
- Background
- Unconstrained optimization
- Fundamental of unconstrained optimization
- Line search methods
- Trust region methods
- Conjugate gradient methods
- Quasi-Newton methods
- Inexact Newton methods

Outline of class-continue

- Linear programming
- The simplex method
- The interior point method
- Constrained optimization
- Optimality conditions
- Quadratic programming
- Penalty and augmented Largrangian methods
- Active set methods
- Interior point methods

Optimization Tree

Classification

- Minimization or maximization
- Continuous vs. discrete optimization
- Constrained and unconstrained optimization
- Linear and nonlinear programming
- Convex and non-convex problems
- Global and local solution

Affine, convex, and cones

$$
x=\sum_{i=1}^{p} \lambda_{i} x_{i}=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{p} x_{p}
$$

where $x_{i} \in R^{n}$ and $\lambda_{i} \in R$.

- x is a linear combination of $\left\{x_{i}\right\}$
- x is an affine combination of $\left\{x_{i}\right\}$ if $\sum_{i=1}^{p} \lambda_{i}=1$
- x is a conical combination of $\left\{x_{i}\right\}$ if $\lambda_{i} \geq 0$
- x is a convex combination of $\left\{x_{i}\right\}$ if $\sum_{i=1}^{p} \lambda_{i}=1, \lambda_{i} \geq 0$
- linear combination

- conical combination

- affine combination

- convex combination

Convex function

- A function f is convex if for $\alpha \in[0,1]$

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

- A function f is concave if $-f$ is convex

Some calculus

- Rate of convergence
- Lipschitz continuity
- Single valued function
- Derivatives and Hessian
- Mean value theorem and Taylor's theorem
- Vector valued function
- Derivatives and Jacobian

Rate of convergence

- Let $\left\{x_{\mathrm{k}} \mid x_{\mathrm{k}} \in R^{n}\right\}$ be a sequence converge to x^{*}
- The convergence is Q-linear if for a constant $r \in(0,1)$

$$
\frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|} \leq r
$$

- The convergence is Q -superlinear if

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=0
$$

- The convergence is $p \mathrm{Q}$-order if for a constant M

$$
\frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{p}} \leq M
$$

Lipschitz continuity

- A function f is said to be Lipschitz continuous on some set \mathcal{N} if there is a constant $L>0$ such that

$$
\|f(x)-f(y)\| \leq L\|x-y\| \text { for all } x, y \in \mathcal{N}
$$

- If function f and g are Lipschitz continuous on \mathcal{N}, $f+g$ and $f g$ are Lipschitz continuous on \mathcal{N}.

Derivatives

- For a single valued function $f\left(x_{1}, \ldots, x_{\mathrm{n}}\right): R^{n} \rightarrow R$
- Partial derivative of $x_{\mathrm{i}}: \quad \frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h}$
- Gradient of f is $\nabla f(x)=\left(\begin{array}{c}\partial f / \partial x_{1} \\ \partial f / \partial x_{2} \\ \vdots \\ \partial f / \partial x_{n}\end{array}\right)$
- Directional derivatives: for $\|p\|=1$

$$
D(f(x), p)=\lim _{h \leftarrow 0} \frac{f(x+h p)-f(x)}{h}=\nabla f(x)^{T} p
$$

Hessian

- In some sense of the second derivative of f

$$
\nabla^{2} f(x)=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x)
\end{array}\right)
$$

- If f is twice continuously differentiable, Hessian is symmetric.

Taylor's theorem

- Mean value theorem: for $\alpha \in(0,1)$

$$
f(x+p)=f(x)+\nabla f(x+\alpha p)^{T} p
$$

- Taylor's theorem: for $\alpha \in(0,1)$

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x+\alpha p) p
$$

Vector valued function

- For a vector valued function $r: R^{n} \rightarrow R^{m}$

$$
r(x)=\left(\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right)
$$

- The Jacobian of r at x is

$$
J(x)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \frac{\partial f_{1}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\frac{\partial f_{2}}{\partial x_{1}}(x) & \frac{\partial f_{2}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(x) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \frac{\partial f_{m}}{\partial x_{2}}(x) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right)=\left(\begin{array}{c}
\nabla f_{1}(x)^{T} \\
\nabla f_{2}(x)^{T} \\
\vdots \\
\nabla f_{m}(x)^{T}
\end{array}\right)
$$

Some linear algebra

- Vectors and matrix
- Eigenvalue and eigenvector
- Singular value decomposition
- LU decomposition and Cholesky decomposition
- Subspaces and QR decomposition
- Sherman-Morrison-Woodbury formula

Vector

- A column vector $x \in R^{n}$ is denoted as $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$
- The inner product of $x, y \in R^{n}$ is $x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}$
- Vector norm
- 1-norm $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- 2-norm

$$
\|x\|_{2}=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

[^0]
Matrix

- A matrix $A \in R^{m \times n}$ is $A=\left(\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 n} \\ A_{21} & A_{22} & \cdots & A_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m 1} & A_{m 2} & \cdots & A_{m n}\end{array}\right)$
- The transpose of A is $A^{T}=\left(\begin{array}{cccc}A_{11} & A_{21} & \cdots & A_{m 1} \\ A_{12} & A_{22} & \cdots & A_{m 2} \\ \vdots & 2 & \cdots & 2 \\ A_{1 n} & A_{2 n} & \cdots & A_{m n}\end{array}\right)$
- Matrix A is symmetric if $A^{\mathrm{T}}=A$
- Matrix norm: $\|A\|_{p}=\max \|A x\|_{p}$ for $\|x\|_{p}=1, p=1,2, \infty$

Eigenvalue and eigenvector

- A scalar λ is an eigenvalue of an $n \times n$ matrix A if there is a nonzero vector x such that $A x=\lambda x$.
- Vector x is called an eigenvector.
- Matrix A is symmetric positive definite (SPD) if $A^{\mathrm{T}}=A$ and all its eigenvalues are positive.
- If A has n linearly independent eigenvectors, A can have the eigen-decomposition: $A=X \Lambda X^{-1}$.
- Λ is diagonal with eigenvalues as its diagonal elements
- Column vectors of X are corresponding eigenvectors

Spectral decomposition

- If A is real and symmetric, all its eigenvalues are real, and there are n orthogonal eigenvectors.
- The spectral decomposition of a symmetric matrix A is $A=Q \wedge Q^{\mathrm{T}}$.
- Λ is diagonal with eigenvalues as its diagonal elements
- Q is orthogonal, i.e. $Q^{\mathrm{T}} Q=Q Q^{\mathrm{T}}=I$.
- Column vectors of Q are corresponding eigenvectors.

Singular value

- The singular values of an $m \times n A$ are the square roots of the eigenvalues of $A^{\mathrm{T}} A$.
- Any matrix A can have the singular value decomposition (SVD): $A=U \Sigma V^{\mathrm{T}}$.
- Σ is diagonal with singular values as its elements.
- U and V are orthogonal matrices.
- The column vectors of U are called left singular vectors of A; the column vectors of V is called the right singular vector of A.

LU decomposition

- The LU decomposition with pivoting of matrix A is $P A=L U$
- $\quad P$ is a permutation matrix
- L is lower triangular; U is upper triangular.
- The linear system $A x=b$ can be solved by

1. Perform LU decompose $P A=L U$
2. Solve $L y=P b$
3. Solve $U x=y$

Cholesky decomposition

- For a SPD matrix A, there exists the Cholesky decomposition $P^{\mathrm{T}} A P=L L^{\mathrm{T}}$
- P is a permutation matrix
- L is a lower triangular matrix
- If A is not SPD, the LBL decomposition can be used: $P^{\mathrm{T}} A P=L B L^{\mathrm{T}}$
- B is a block diagonal matrix with blocks of dimension 1 or 2.

Subspaces, QR decomposition

- The null space of an $m \times n$ matrix A is

$$
\operatorname{Null}(A)=\{w \mid A w=0, w \neq 0\}
$$

- The range of A is $\operatorname{Range}(A)=\{w \mid w=A v, \forall v\}$.
- Fundamental of linear algebra:

$$
\operatorname{Null}(A) \oplus \operatorname{Range}\left(A^{\mathrm{T}}\right)=R^{n}
$$

- Matrix A has the QR decomposition $A P=Q R$
- P is permutation matrix; Q is an orthogonal matrix; R is an upper triangular matrix.

Singularity and ill-conditioned

- An $n \times n$ matrix A is singular (noninvertible) iff
- A has 0 eigenvalues
- A has 0 singular values
- The null space of A is not empty
- The determinant of A is zero
- The condition number of A is $\kappa(A)=\|A\|\left\|A^{-1}\right\|$
- A is ill-conditioned if it has a large condition number.

Sherman-Morrison-Woodbury formula

- For a nonsinular matrix $A \in R^{n x n}$, if a rank-one update of $\hat{A}=A+u \nu^{\mathrm{T}}$ is also nonsingular,

$$
\hat{A}^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u} .
$$

- For matrix $U, V \in R^{n \times p}, 1 \leq p \leq n$, if $\hat{A}=A+U V^{\mathrm{T}}$ is nonsingular,

$$
\hat{A}^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

[^0]: $\|x\|_{\infty}=\max _{i=1 \ldots n}\left|x_{i}\right|$

