CS5321 Numerical Optimization

01 Introduction

3/9/2009

Class information

- Class webpage: http://www.cs.nthu.edu.tw/~cherung/cs5321
- Text and reference books:
 - Numerical optimization, Jorge Nocedal and Stephen J. Wright (http://www.mcs.anl.gov/otc/Guide)
 - Linear and Nonlinear Programming, Stephen G. Nash and Ariela Sofer (1996, 2005)
 - Numerical Methods for Unconstrained Optimization and Nonlinear Equations, J. Dennis and R. Schnabel
- TA: 王治權 pponywong@gmail.com

Grading

- Class notes (50%)
 - Using latex to write one class note.
 - Peer review system
 - You must review others' notes and give comments
 - The grade is given on both works (30%-20%)
- Project (40%)
 - Applications, software survey, implementations
 - Proposal (10%), presentation(10%), and report (20%)
- Class attendance (10%)

Outline of class

- Introduction
 - Background
- Unconstrained optimization
 - Fundamental of unconstrained optimization
 - Line search methods
 - Trust region methods
 - Conjugate gradient methods
 - Quasi-Newton methods
 - Inexact Newton methods

Outline of class-continue

- Linear programming
 - The simplex method
 - The interior point method
- Constrained optimization
 - Optimality conditions
 - Quadratic programming
 - Penalty and augmented Largrangian methods
 - Active set methods
 - Interior point methods

5

Optimization Tree

Classification

- Minimization or maximization
- Continuous vs. discrete optimization
- Constrained and unconstrained optimization
- Linear and nonlinear programming
- Convex and non-convex problems
- Global and local solution

Affine, convex, and cones

$$x = \sum_{i=1}^{p} \lambda_i x_i = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_p x_p$$

where $x_i \in \mathbb{R}^n$ and $\lambda_i \in \mathbb{R}$.

200

- x is a *linear combination* of $\{x_i\}$
- *x* is an *affine combination* of $\{x_i\}$ if $\sum_{i=1}^{i} \lambda_i = 1$
- *x* is a *conical combination* of $\{x_i\}$ if $\lambda_i \ge 0$
- *x* is a *convex combination* of $\{x_i\}$ if $\sum_{i=1}^{p} \lambda_i = 1, \lambda_i \ge 0$

• conical combination

• convex combination

3/9/2009

Convex function

• A function f is convex if for $\alpha \in [0,1]$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• A function f is concave if -f is convex

Some calculus

- Rate of convergence
- Lipschitz continuity
- Single valued function
 - Derivatives and Hessian
 - Mean value theorem and Taylor's theorem
- Vector valued function
 - Derivatives and Jacobian

Rate of convergence

- Let $\{x_k | x_k \in \mathbb{R}^n\}$ be a sequence converge to x^*
 - The convergence is Q-linear if for a constant $r \in (0,1)$

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le r$$

• The convergence is Q-superlinear if

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

• The convergence is *p* Q-order if for a constant *M*

$$\frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^p} \le M$$

3/9/2009

Lipschitz continuity

- A function *f* is said to be Lipschitz continuous on some set N if there is a constant L>0 such that
 || f(x) f(y)|| ≤ L ||x y|| for all x,y∈N
- If function *f* and *g* are Lipschitz continuous on *N*, *f*+*g* and *fg* are Lipschitz continuous on *N*.

Derivatives

- For a single valued function $f(x_1, \dots, x_n): \mathbb{R}^n \to \mathbb{R}$
 - Partial derivative of x_i : $\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x + he_i) f(x)}{h}$

• Gradient of
$$f$$
 is $\nabla f(x) = \begin{pmatrix} \partial f / \partial x_1 \\ \partial f / \partial x_2 \\ \vdots \\ \partial f / \partial x_n \end{pmatrix}$

• Directional derivatives: for ||p||=1

$$D(f(x), p) = \lim_{h \leftarrow 0} \frac{f(x+hp) - f(x)}{h} = \nabla f(x)^T p.$$

Hessian

• In some sense of the second derivative of f

• If *f* is twice continuously differentiable, Hessian is symmetric.

Taylor's theorem

• Mean value theorem: for $\alpha \in (0,1)$

$$f(x+p) = f(x) + \nabla f(x+\alpha p)^T p$$

• Taylor's theorem: for $\alpha \in (0,1)$

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2}p^T \nabla^2 f(x+\alpha p)p$$

Vector valued function

• For a vector valued function $r: \mathbb{R}^n \to \mathbb{R}^m$

$$r(x) = \begin{pmatrix} f_1(x_1, x_2, \cdots, x_n) \\ f_2(x_1, x_2, \cdots, x_n) \\ \vdots \\ f_m(x_1, x_2, \cdots, x_n) \end{pmatrix}$$

• The Jacobian of *r* at *x* is

$$J(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix} = \begin{pmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{pmatrix}$$

Some linear algebra

- Vectors and matrix
- Eigenvalue and eigenvector
- Singular value decomposition
- LU decomposition and Cholesky decomposition
- Subspaces and QR decomposition
- Sherman-Morrison-Woodbury formula

Vector

- A column vector x∈ Rⁿ is denoted as x = \$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\$

 The transpose of x is x^T = (x_1 x_2 \ldots x_n) (x_1 \\ x_n \end{pmatrix})\$

 The inner product of x = D^m.
- The inner product of $x, y \in \mathbb{R}^n$ is $x^T y = \sum_{i=1}^n x_i y_i$
- Vector norm

• 1-norm
$$||x||_1 = \sum_{i=1}^n |x_i|$$

• 2-norm $||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$

•
$$\infty$$
-norm $||x||_{\infty} = \max_{i=1...n} |x_i|_{\infty}$

Matrix

Matrix
• A matrix
$$A \in \mathbb{R}^{m \times n}$$
 is $A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}$

• The transpose of A is
$$A^T = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{m1} \\ A_{12} & A_{22} & \cdots & A_{m2} \\ \vdots & \vdots & \cdots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{mn} \end{pmatrix}$$

- Matrix A is symmetric if $A^{T}=A$
- Matrix norm: $||A||_p = \max ||Ax||_p$ for $||x||_p = 1, p = 1, 2, \infty$

Eigenvalue and eigenvector

- A scalar λ is an eigenvalue of an $n \times n$ matrix A if there is a nonzero vector x such that $Ax = \lambda x$.
 - Vector *x* is called an eigenvector.
- Matrix *A* is symmetric positive definite (SPD) if $A^{T}=A$ and all its eigenvalues are positive.
- If *A* has *n* linearly independent eigenvectors, *A* can have the eigen-decomposition: $A=XAX^{-1}$.
 - Λ is diagonal with eigenvalues as its diagonal elements
 - Column vectors of *X* are corresponding eigenvectors

Spectral decomposition

- If *A* is real and symmetric, all its eigenvalues are real, and there are *n* orthogonal eigenvectors.
- The spectral decomposition of a symmetric matrix A is $A = QAQ^{T}$.
 - Λ is diagonal with eigenvalues as its diagonal elements
 - Q is orthogonal, i.e. $Q^{T}Q = QQ^{T} = I$.
 - Column vectors of *Q* are corresponding eigenvectors.

Singular value

- The singular values of an $m \times n A$ are the square roots of the eigenvalues of $A^{T}A$.
- Any matrix A can have the singular value decomposition (SVD): $A=U\Sigma V^{T}$.
 - Σ is diagonal with singular values as its elements.
 - *U* and *V* are orthogonal matrices.
 - The column vectors of *U* are called left singular vectors of *A*; the column vectors of *V* is called the right singular vector of *A*.

LU decomposition

- The LU decomposition with pivoting of matrix *A* is *PA=LU*
 - *P* is a permutation matrix
 - L is lower triangular; U is upper triangular.
- The linear system Ax=b can be solved by
 - 1. Perform LU decompose PA=LU
 - 2. Solve Ly=Pb
 - 3. Solve Ux=y

Cholesky decomposition

- For a SPD matrix *A*, there exists the Cholesky decomposition $P^{T}AP = LL^{T}$
 - *P* is a permutation matrix
 - *L* is a lower triangular matrix
- If A is not SPD, the LBL decomposition can be used: $P^{T}AP = LBL^{T}$
 - *B* is a block diagonal matrix with blocks of dimension 1 or 2.

Subspaces, QR decomposition

- The null space of an $m \times n$ matrix A is **Null** $(A) = \{w | Aw = 0, w \neq 0\}$
- The range of A is **Range**(A)= $\{w|w=Av, \forall v\}$.
- Fundamental of linear algebra:

Null(A) \oplus **Range**(A^{T}) = \mathbb{R}^{n}

- Matrix A has the QR decomposition AP = QR
 - P is permutation matrix; Q is an orthogonal matrix; R is an upper triangular matrix.

Singularity and ill-conditioned

- An *n*×*n* matrix *A* is singular (noninvertible) iff
 - A has 0 eigenvalues
 - A has 0 singular values
 - The null space of *A* is not empty
 - The determinant of A is zero
- The condition number of A is $\kappa(A) = ||A|| ||A^{-1}||$
 - *A* is ill-conditioned if it has a large condition number.

Sherman-Morrison-Woodbury formula

• For a nonsinular matrix $A \in \mathbb{R}^{n \times n}$, if a rank-one update of $\hat{A} = A + uv^{T}$ is also nonsingular,

$$\hat{A}^{-1} = A^{-1} - \frac{A^{-1}uv^T A^{-1}}{1 + v^T A^{-1}u}.$$

• For matrix $U, V \in \mathbb{R}^{n \times p}$, $1 \le p \le n$, if $\hat{A} = A + UV^T$ is nonsingular, $\hat{A}^{-1} = A^{-1} - A^{-1}U(I + V^T A^{-1}U)^{-1}V^T A^{-1}$