CS5321
Numerical Optimization

01 Introduction




Class information

e (Class webpage:
http://www.cs.nthu.edu.tw/~cherung/cs5321

e Text and reference books:

Numerical optimization, Jorge Nocedal and Stephen J.
Wright (http://www.mcs.anl.gov/otc/Guide)

Linear and Nonlinear Programming, Stephen G. Nash
and Ariela Sofer (1996, 2005)

Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, J. Dennis and R. Schnabel

o TA: £ )6 pponywong@gmail.com
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Grading

e Class notes (50%)

Using latex to write one class note.

Peer review system

Y ou must review others’ notes and give comments
The grade 1s given on both works (30%-20%)

e Project (40%)
Applications, software survey, implementations

Proposal (10%), presentation(10%), and report (20%)
e Class attendance (10%)
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Outline of class

e Introduction
Background

e Unconstrained optimization
Fundamental of unconstrained optimization
Line search methods
Trust region methods
Conjugate gradient methods
Quasi-Newton methods
Inexact Newton methods
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Outline of class-continue

e Linear programming
e The simplex method
e The interior point method

e Constrained optimization
e Optimality conditions
¢ Quadratic programming
e Penalty and augmented Largrangian methods
e Active set methods
e Interior point methods
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Classification

e Minimization or maximization

e Continuous vs. discrete optimization

e Constrained and unconstrained optimization
e Linear and nonlinear programming

e Convex and non-convex problems

e (Global and local solution
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Affine, convex, and cones

P
T = Z ANiT; = Ax1 + Aoz + -+ - + )\}.};z,p

g—]

where x,.€ R" and L.e R .

e x 1s a linear combination of {x } )

e x 18 an affine combination of {x } if ;A =1

e x 18 a conical combination of {x.} if ) >o0
p

® x is a convex combination of {x;} if ST A =14 >0

1=1
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Convex function

e A function f1s convex if for a€[0,1]
flaz+ (1 -a)y) <af(z) + (1 -a)f(y)

e A function f1s concave if —=f 1s convex

/

/
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Some calculus

e Rate of convergence
e Lipschitz continuity

e Single valued function
Derivatives and Hessian

Mean value theorem and Taylor’s theorem

e Vector valued function

Derivatives and Jacobian

3/9/2009 11



Rate of convergence

e Let {x |x e R"} be asequence converge to x*
e The convergence 1s Q-linear 1f for a constant »€(0,1)
legg1 — 2| _ )

T

g — =¥
e The convergence 1s Q-superlinear 1f
7 5 O Ty o |
- |41 | _ 3

|

fe— o ”‘Tﬁ: — &
e The convergence 1s p Q-order 1f for a constant M

opps =2l _
lox —a P~
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Lipschitz continuity

e A function f1s said to be Lipschitz continuous on
some set N'1f there 1s a constant L.>0 such that

1f ) =f Ol =L [lx =yl for all x,ye N

e If function f and g are Lipschitz continuous on 9%,
f+g and fg are Lipschitz continuous on V.
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Derivatives :

e For a single valued function f (x,,....x,): R"—> R

o Partial derivative of x;: = of i f@+he) — f(@)
dai h—0 h
[ 0f [0z )
e Gradientoff is Vf(z)=| %7972
\ of/oan |

e Directional derivatives: for ||p||=1

D(f(@),p) = Jim LEXTID =T _ Gy,
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Hesslian

e In some sense of the second derivative of f

Vif(x) =

E=SOF A0

ﬁ%u;_&%u

Kar—ntr() m()

mﬂ%ﬂu

(@) |

Tﬂ

L) ,

e If f1s twice continuously differentiable, Hessian 1s
symmetric.
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Taylor’s theorem

e Mean value theorem: for a<(0,1)

fz+p)=f(x) +V(z+ap)p

e Taylor’s theorem: for ae(0,1)

fl@+p)=fz)+Vf(z) p+ %pTWf(:v + ap)p
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Vector valued function

e For a vector valued

[ fi(z1,20,---,2n)

function r: R"—>R™  r(z) = fz(i’LiFg:, )

e The Jacobian of 7 at x 1s

(38G6) @) %m)\
J@)= | @ 5@ - 5k

ﬂ iﬂ: E‘il 1"."!: / ﬂ 1'?'!: /
| 72() #2(@) - G2
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Some linear algebra

e Vectors and matrix

e Eigenvalue and eigenvector

e Singular value decomposition

e LU decomposition and Cholesky decomposition
e Subspaces and QR decomposition

e Sherman-Morrison-Woodbury formula
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I \]
e A column vector xe R" is denoted as = = | *?
e The transpose of x is «7 = (21 z2 -+ @p )\ %7/
. R Tt
e The inner product of x,ye R"is 2Ty =Y a2,
i—=1
e Vector norm
T
e |l-norm Izl =" |
i—=1
o 2mom  [afo=alz= |3 o?

® 0-NOrM  ||zflse = max |z
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Matrix
[ A1 Ao
e A matrix Ae R""is A= 4?1 A?E
\aqml Anﬂ
[ A1 Ay
e The transpose of 4 is A" = AEIE A?E
\ A1p Aop -

e Matrix A is symmetric if A=

CY X
o000
0000
XX
o0
o

thr\

4Eﬁ

4nn1)

Aml

Am?

Amn

e Matrix norm: ||4||,= max||A4x]|, for ||| ,=1, p=1,2,00
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Eigenvalue and eigenvector

e A scalar A 1s an eigenvalue of an nxn matrix 4 1f
there 1s a nonzero vector x such that Ax= Ax.

Vector x 1s called an eigenvector.

e Matrix A 1s symmetric positive definite (SPD) 1f
A'=A and all its eigenvalues are positive.

e If 4 has n linearly independent eigenvectors, A4
can have the eigen-decomposition: A=XAX 1.
A 1s diagonal with eigenvalues as its diagonal elements
Column vectors of X are corresponding eigenvectors
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Spectral decomposition

e If A 1s real and symmetric, all its eigenvalues are
real, and there are n orthogonal eigenvectors.

e The spectral decomposition of a symmetric matrix
A is A=0A0".
A 1s diagonal with eigenvalues as its diagonal elements

O is orthogonal, i.e. Q'O = 00" =1I.
Column vectors of O are corresponding eigenvectors.
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Singular value

e The singular values of an mxn A4 are the square
roots of the eigenvalues of 414.

e Any matrix 4 can have the singular value
decomposition (SVD): A=UX VT,
2'1s diagonal with singular values as its elements.
U and V are orthogonal matrices.

The column vectors of U are called left singular
vectors of 4; the column vectors of V' 1s called the right
singular vector of 4.
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LU decomposition

e The LU decomposition with pivoting of matrix 4
1s PA=LU
P 1s a permutation matrix
L 1s lower triangular; U is upper triangular.

e The linear system Ax=>b can be solved by
Perform LU decompose PA=LU
Solve Ly=Pb
Solve Ux=y
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Cholesky decomposition

e For a SPD matrix A, there exists the Cholesky
decomposition PTAP = LL"
P 1s a permutation matrix

L 1s a lower triangular matrix

e If 4 1s not SPD, the LBL decomposition can be
used: PTAP = LBL!

B 1s a block diagonal matrix with blocks of dimension
1 or 2.
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Subspaces, QR decomposition

e The null space of an mxn matrix 4 1s
Null(4)={w|Aw=0,w=0}
e The range of 4 1s Range(A)={w|\w=Av,Vv}.
e Fundamental of linear algebra:
Null(4) @ Range(A4") = R”
e Matrix 4 has the QR decomposition AP = OR

P 1s permutation matrix; Q 1s an orthogonal matrix;
R 1s an upper triangular matrix.
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Singularity and ill-conditioned

e An nxn matrix A4 is singular (noninvertible) 1ff
e A has 0 eigenvalues
e A has 0 singular values
e The null space of 4 1s not empty
e The determinant of 4 1s zero

e The condition number of 4 is «(4) = || A|[||A™}|

e A is ill-conditioned 1if 1t has a large condition number.
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Sherman-Morrison-Woodbury
formula

e For a nonsinular matrix 4 € R, if a rank-one
update of A =4+uv!' is also nonsingular,

. Alwlal
A "= — T
14+ v A *u

e For matrix U,Ve R?, 1<p<n, if A =4+UVT is
nonsingular,

A=A A +vTAp) "Wyl A-d
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