Derivation of the local quadratic model

$$
\min f(x) \text { s.t. } c(x)=0
$$

The Lagrangian of above problem is

$$
L(x, \lambda)=f(x)-\lambda c(x)
$$

The KKT condition imposes the following equations

$$
\begin{aligned}
& \nabla L_{x}(x, \lambda)=\nabla f(x)-\lambda \nabla c(x)=0 \\
& \nabla L_{\lambda}(x, \lambda)=c(x)=0
\end{aligned}
$$

Let $\quad F(x, \lambda)=\binom{\nabla_{x} L}{\nabla_{\lambda} L}=\binom{\nabla f-\lambda \nabla c}{c}$
$F=0$ can be solved by the Newton's method

$$
\begin{aligned}
& \binom{x_{k+1}}{\lambda_{k+1}}=\binom{x_{k}}{\lambda_{k}}+\binom{p_{k}}{\mu_{k}} \\
& \nabla F\left(x_{k}, \lambda_{k}\right)\binom{p_{k}}{\mu_{k}}=-F\left(x_{k}, \lambda_{k}\right)
\end{aligned}
$$

where $\nabla F_{k} \equiv \nabla F\left(x_{k}, \lambda_{k}\right)=\left(\begin{array}{cc}\nabla_{x x}^{2} L_{k} & -\nabla c_{k} \\ \nabla c_{k}^{T} & 0\end{array}\right)$
The above equation can be rewritten as

$$
\left(\begin{array}{cc}
\nabla_{x x}^{2} L_{k} & \nabla c_{k} \\
\nabla c_{k}^{T} & 0
\end{array}\right)\binom{-p_{k}}{\mu_{k}}=\binom{\nabla f_{k}-\lambda_{k} \nabla c_{k}}{c_{k}}
$$

The equation of the first row block is

$$
\begin{aligned}
-\nabla_{x x}^{2} L_{x} p_{k}+\nabla c_{k} \mu_{k} & =\nabla f_{k}-\lambda_{k} \nabla c_{k} \\
-\nabla_{x x}^{2} L_{x} p_{k}+\nabla c_{k}\left(\lambda_{k}+\mu_{k}\right) & =\nabla f_{k} \\
-\nabla_{x x}^{2} L_{x} p_{k}+\nabla c_{k} \lambda_{k+1} & =\nabla f_{k}
\end{aligned}
$$

The entire system can be rewritten as

$$
\left(\begin{array}{cc}
\nabla_{x x}^{2} L_{k} & \nabla c_{k} \\
\nabla c_{k}^{T} & 0
\end{array}\right)\binom{-p_{k}}{\lambda_{k+1}}=\binom{\nabla f_{k}}{c_{k}}
$$

If it is a KKT system of a quadratic programming, the original problem is (chap 16)

$$
\begin{array}{ll}
\min _{p} & \frac{1}{2} p^{T} \nabla^{2} L\left(x_{k}, \lambda_{k}\right) p+p^{T} \nabla f\left(x_{k}\right) \\
\text { s.t. } & \nabla c\left(x_{k}\right)^{T} p+c\left(x_{k}\right)=0
\end{array}
$$

Example from N\&S book

$$
\begin{gathered}
\min f(x)=e^{3 x_{1}+4 x_{2}} \text { s.t. } c(x)=x_{1}^{2}+x_{2}^{2}-1=0 \\
\nabla f=\binom{3}{4} e^{3 x_{1}+4 x_{2}} \\
\nabla^{2} f=\left(\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right) e^{3 x_{1}+4 x_{2}} \\
L(x, \lambda)=\binom{2 x_{1}}{2 x_{2}} \\
\nabla^{2} c=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \\
\nabla L_{x}(x, \lambda)=\binom{3 f(x)-2 \lambda x_{1}}{4 f(x)-2 \lambda x_{2}} \\
\nabla L_{x x}(x, \lambda)=\left(\begin{array}{cc}
9 f(x)-2 \lambda & 12 f(x) \\
12 f(x) & 16 f(x)-2 \lambda
\end{array}\right)
\end{gathered}
$$

Initial guess $x_{0}=(-0.7,-0.7)^{T}, \lambda_{0}=-0.01$

$$
\begin{gathered}
f\left(x_{0}\right)=0.0074, c\left(x_{0}\right)=-0.02 \\
\nabla f\left(x_{0}\right)=\binom{.022}{.029} \nabla c\left(x_{0}\right)=\binom{-1.4}{-1.4} \\
\nabla^{2} L\left(x_{0}, \lambda_{0}\right)=\left(\begin{array}{ll}
.087 & .089 \\
.089 & .139
\end{array}\right) \\
p=\binom{.14}{-.15}, x_{1}=x_{0}+p=\binom{-.55}{-.85} \\
\lambda_{1}=-0.14808 \\
x^{*}=\binom{-.6}{-.8}, \lambda^{*}=-2.5 e^{-5} \approx-.168
\end{gathered}
$$

Quadratic merit function

$$
\begin{aligned}
& M(x)=f(x)+10 c(x)^{T} c(x) \\
& x_{0}=(-0.7,-0.7)^{T}, f\left(x_{0}\right)=.0074, c\left(x_{0}\right)=-.02 \\
& M\left(x_{0}\right)=f\left(x_{0}\right)+10 c\left(x_{0}\right)^{T} c\left(x_{0}\right)=.011447 \\
& x_{1}=(-0.55,-0.85)^{T}, f\left(x_{1}\right)=.0061, c\left(x_{1}\right)=.044 \\
& M\left(x_{1}\right)=f\left(x_{1}\right)+10 c\left(x_{1}\right)^{T} c\left(x_{1}\right)=.025961
\end{aligned}
$$

Set step length $\alpha=2 / 3$, and let $x_{1}=x_{0}+\alpha p$

$$
\begin{aligned}
& \hat{x}_{1}=(-0.61,-0.80)^{T}, f\left(\hat{x}_{1}\right)=.0063, c\left(\hat{x}_{1}\right)=.013 \\
& M\left(\hat{x}_{1}\right)=f\left(\hat{x}_{1}\right)+10 c\left(\hat{x}_{1}\right)^{T} c\left(\hat{x}_{1}\right)=.00826
\end{aligned}
$$

