Linear constraints

$$
\begin{array}{ll}
\min \sin \left(x_{1}+x_{2}\right)+x_{3}^{2}+\frac{1}{3}\left(x_{4}+x_{5}^{4}+x_{6} / 2\right) \\
\text { subject to } \quad & 8 x_{1}-6 x_{2}+x_{3}+9 x_{4}+4 x_{5}=6 \\
3 x_{1}+2 x_{2}-x_{4}+6 x_{5}+4 x_{6}=-4
\end{array}
$$

- Let $\mathrm{x}=\left(\mathrm{x}_{3}, \mathrm{x}_{6} \mid \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)^{\top}$, and solve $\mathrm{x}_{3}, \mathrm{x}_{6}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{3} \\
x_{6}
\end{array}\right]=-\left[\begin{array}{cccc}
8 & -6 & 9 & 4 \\
\frac{3}{4} & \frac{1}{2} & \frac{-1}{4} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{c}
6 \\
-1
\end{array}\right] } \\
\min _{x_{1}, x_{2}, x_{4}, x_{5}} & \sin \left(x_{1}+x_{2}\right)+\left(8 x_{1}-6 x_{2}+9 x_{4}+4 x_{5}-6\right)^{2} \\
& +\frac{1}{3}\left(x_{4}+x_{5}^{4}-\left[(1 / 2)+(3 / 8) x_{1}+(1 / 4) x_{2}-(1 / 8) x_{4}+(3 / 4) x_{5}\right]\right)
\end{aligned}
$$

General solution to $\mathrm{Ax}=\mathrm{b}$

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
1 & 0 & 8 & -6 & 9 & 4 \\
0 & 4 & 3 & 2 & -1 & 6
\end{array}\right]=\left[\begin{array}{ll}
B & N
\end{array}\right] \\
& x=\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
B^{-1} b \\
0
\end{array}\right]+\left[\begin{array}{c}
-B^{-1} N \\
I
\end{array}\right] x_{N}
\end{aligned}
$$

$Y=\left[-B^{-1} b\right]$ is a solution to $\mathrm{Ax}=\mathrm{b}$
$0 \quad A Y=-B B^{-1} b+0=b$
$Z=\left[-B^{-1} N\right]$ is a null space of A^{\top}

Nonlinear elimination

$$
\min x^{2}+y^{2} \quad \text { subject to }(x-1)^{3}=y^{2} .
$$

- The solution is at $(1,0)$
- But replacing y^{2} by $(x-1)^{3}$ results
$h(x)=x^{2}+(x-1)^{3}$.
- Solution is at $-\infty$

Difficulty of inequality constraints

$$
\begin{array}{cl}
\min _{x, y} f(x, y) & =(x-2)^{2} / 2+(y-.5) / 2 \\
\text { s.t. } & (x+1)^{-1}-y-0.25 \geq 0 \\
& x \geq 0 \\
& y \geq 0
\end{array}
$$

Merit function

$$
\begin{gathered}
\min x \text { subject to } x \geq 1 \\
\phi(x, \mu)=x+\mu[x-1]^{-}=\left\{\begin{array}{cc}
(1-\mu) x+\mu & \text { if } x \leq 1 \\
x & \text { if } x>1
\end{array}\right. \\
\underbrace{}_{\mathrm{x}=1}+1
\end{gathered}
$$

$$
\begin{aligned}
& \min x_{1}+x_{2} \\
& x_{1}^{2}+x_{2}^{2}-2=0
\end{aligned}
$$

the solution is $(-1,-1)^{T}$

$$
Q(x ; \mu)=x_{1}+x_{2}+
$$

$$
\frac{\mu}{2}\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}
$$

Augmented Lagrangian

Filters

Maratos effect

$\min f\left(x_{1}, x_{2}\right)=2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1}$
subject to $\quad x_{1}^{2}+x_{2}^{2}-1=0$

$$
x^{*}=(1,0)
$$

$x_{k}=(\cos \theta, \sin \theta)^{T}$
$f\left(x_{k}\right)=-\cos \theta$
$\nabla f\left(x_{k}\right)=\binom{4 \cos \theta-1}{4 \sin \theta}$

- Suppose the search direction is

$$
p_{k}=\binom{\sin ^{2} \theta}{-\sin \theta \cos \theta} \quad x_{k}+p_{k}=\binom{\cos \theta+\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}
$$

$$
\begin{aligned}
& \left\|x_{k}+p_{k}-x^{*}\right\|_{2}=2 \sin ^{2}(\theta / 2) \\
& \left\|x_{k}-x^{*}\right\|_{2}=2|\sin (\theta / 2)|
\end{aligned} \frac{\left\|x_{k}+p_{k}-x^{*}\right\|_{2}}{\left\|x_{k}-x^{*}\right\|_{2}^{2}}=\frac{1}{2}
$$

- But

$$
\begin{aligned}
f\left(x_{k}+p_{k}\right) & =\sin ^{2} \theta-\cos \theta>-\cos \theta=f\left(x_{k}\right), \\
c\left(x_{k}+p_{k}\right) & =\sin ^{2} \theta>c\left(x_{k}\right)=0,
\end{aligned}
$$

Second order correction

- The Jacobian of $c\left(x_{k}\right)$ is $A_{k}=\left[2 x_{1}, 2 x_{2}\right]$
- At $\mathrm{x}_{\mathrm{k}}=(0,1)^{\top}, \mathrm{p}_{\mathrm{k}}=(1,0)^{\top}, \quad A_{k}=[0,2]$

$$
\begin{aligned}
& p^{*}=-A_{k}^{T}\left(A_{k} A_{k}^{T}\right)^{-1} c\left(x_{k}+p_{k}\right)=\left[\begin{array}{c}
0 \\
-1 / 2
\end{array}\right] \\
& -\mathrm{x}_{\mathrm{k}}+\mathrm{p}_{\mathrm{k}}+\mathrm{p}_{\mathrm{k}}^{*}=(1,1 / 2) \\
& f\left(x_{k}+p_{k}+p_{k}^{*}\right)=-1 / 2 \\
& c\left(x_{k}+p_{k}+p_{k}^{*}\right)=1 / 2
\end{aligned}
$$

Non-monotone techniques

- Minimize the merit function at $x=(1,1), \mu=10$

$$
\begin{aligned}
& \phi(x)=2\left(x_{1}^{2}+x_{2}^{2}-1\right)-x_{1}+10\left|x_{1}^{2}+x_{2}^{2}-1\right| \\
& \nabla \phi(x)=\left[\begin{array}{l}
23 \\
24
\end{array}\right]
\end{aligned}
$$

- Compute α to minimize

$$
\begin{aligned}
& \phi(\mathrm{x}-\alpha \nabla \phi) \\
& -\alpha=0.042534 \\
& -\mathrm{x}-\alpha \nabla \phi=(0.787,0.744)^{\top} .
\end{aligned}
$$

