Example from Prof. Lin's note $\min _{x} \quad-x_{1}+x_{2}$ st.
 $$
\begin{aligned} & x_{1}+x_{2} \leq 40 \\ & 2 x_{1}+x_{2} \leq 60 \\ & x_{1}, x_{2} \geq 0 \end{aligned}
$$

Add slack $\min _{x}$

$$
-x_{1}+x_{2}+0 x_{3}+0 x_{4}
$$ variables st.

$$
\left\{\begin{array}{lr}
x_{1}+x_{2}+x_{3} & =40 \\
2 x_{1}+x_{2} & +x_{4}
\end{array}=60\right.
$$

Standard form

$$
\begin{gathered}
\min _{x} \quad c^{T} x \\
\text { s.t. } \quad A^{T} x=b \\
c=\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right) \quad x=0 \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \quad \mathrm{A}=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) b=\binom{40}{60}
\end{gathered}
$$

Starting from $\mathscr{B}=\{2,4\}, \mathcal{N}=\{1,3\}$

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), N=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right) c=\binom{c_{B}}{c_{N}}=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \\
& x=\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
x_{2} \\
x_{4} \\
x_{1} \\
x_{3}
\end{array}\right)=\binom{B^{-1} b}{0}=\left(\begin{array}{c}
40 \\
20 \\
0 \\
0
\end{array}\right) \\
& z=c^{T} x=40
\end{aligned}
$$

Pricing

- The constraints are

$$
A x=B x_{B}+N x_{N}=b
$$

$$
x_{B}=B^{-1} b-B^{-1} N x_{N}
$$

- The objective is

$$
\begin{aligned}
z & =c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N} \\
& =40+(-2-1) x_{N}=40-2 x_{1}-x_{3}
\end{aligned}
$$

- One can increase x_{1} or x_{3} to reduce z
- select $\mathrm{x}_{1}(\mathrm{q}=1)$

Ratio test

- How much x_{1} can increase?
- Represent x_{B} as a function of x_{1}.
- (from constraint) $x_{B}=B^{-1} b-B^{-1} N x_{N}$

$$
x_{B}=\binom{x_{2}}{x_{4}}=B^{-1} b-B^{-1} N\binom{x_{1}}{0}=\binom{40-x_{1}}{20-x_{1}}
$$

$-x_{4}$ becomes zero first
$-x_{1}=20$, and $p=2$.

Pivoting

- $\mathcal{B}=\{2,4\}, \mathcal{N}=\{1,3\} \Rightarrow \mathcal{B}^{+}=\{2,1\}, \mathcal{N}^{+}=\{4,3\}$

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \Rightarrow B^{+}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=B+\binom{1}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& N=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right) \Rightarrow N^{+}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
-1 & 1
\end{array}\right) \Rightarrow\left(B^{+}\right)^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \\
& \left(B^{+}\right)^{-1}=B^{-1}-\frac{\left(B^{-1} N(:, 1)-e_{2}\right) e_{2}^{T} B^{-1}}{1+e_{2}^{T}\left(B^{-1} N(:, 1)-e_{2}\right)}
\end{aligned}
$$

Second point: $\mathcal{B}=\{2,1\}, \mathcal{N}=\{4,3\}$

$$
\begin{gathered}
B=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), N=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), c=\binom{c_{B}}{c_{N}}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) \\
x=\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
x_{2} \\
x_{1} \\
x_{4} \\
x_{3}
\end{array}\right)=\binom{B^{-1} b}{0}=\left(\begin{array}{c}
20 \\
20 \\
0 \\
0
\end{array}\right) \\
z=c^{T} x=0
\end{gathered}
$$

Pricing

- The constraints are

$$
A x=B x_{B}+N x_{N}=b
$$

$$
x_{B}=B^{-1} b-B^{-1} N x_{N}
$$

- The objective is

$$
\begin{aligned}
z & =c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N} \\
& =0+(0-3) x_{N}=0-0 x_{4}-3 x_{3}
\end{aligned}
$$

- One can increase x_{3} to reduce z
- select $x_{3}(q=2)$

Ratio test

- How much x3 can increase?
- Represent x_{B} as a function of x_{3}.
- (from constraint) $x_{B}=B^{-1} b-B^{-1} N x_{N}$

$$
x_{B}=\binom{x_{2}}{x_{1}}=B^{-1} b-B^{-1} N\binom{0}{x_{3}}=\binom{20-2 x_{3}}{20+x_{3}}
$$

$-x_{2}$ becomes zero first
$-x_{3}=10$, and $p=1$.

Pivoting

$\cdot \mathcal{B}=\{2,1\}, \mathcal{N}=\{4,3\} \Rightarrow \mathscr{B}^{+}=\{3,1\}, \mathcal{N}^{+}=\{4,2\}$

$$
\begin{align*}
& B=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \Rightarrow B^{+}=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)=B+\binom{0}{-1} \tag{10}\\
& N=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Rightarrow N^{+}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \\
& B^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) \Rightarrow\left(B^{+}\right)^{-1}=\left(\begin{array}{cc}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right) \\
& \left(B^{+}\right)^{-1}=B^{-1}-\frac{\left(B^{-1} N(:, 2)-e_{1}\right) e_{1}^{T} B^{-1}}{1+e_{1}^{T}\left(B^{-1} N(:, 2)-e_{1}\right)}
\end{align*}
$$

Third point: $\mathcal{B}=\{3,1\}, \mathcal{N}=\{4,2\}$

$$
\begin{gathered}
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right), N=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), c=\binom{c_{B}}{c_{N}}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right) \\
x=\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
x_{3} \\
x_{1} \\
x_{4} \\
x_{2}
\end{array}\right)=\binom{B^{-1} b}{0}=\left(\begin{array}{c}
10 \\
30 \\
0 \\
0
\end{array}\right) \\
z=c^{T} x=-30
\end{gathered}
$$

Pricing

- The constraints are

$$
A x=B x_{B}+N x_{N}=b
$$

$$
x_{B}=B^{-1} b-B^{-1} N x_{N}
$$

- The objective is

$$
z=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}=c_{B}^{T} B^{-1} b+\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) x_{N}
$$

$$
=-30+\left(\begin{array}{cc}
\frac{1}{2} & \frac{3}{2}
\end{array}\right) x_{N}=-30+x_{2} / 2+3 x_{4} / 2
$$

- One CANNOT increase x_{2} or x_{4} to reduce z
- We found the optimal solution

