

Standard form

Starting from
$$\mathcal{B} = \{2,4\}, \mathcal{N} = \{1,3\}$$

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} c = \begin{pmatrix} c_B \\ c_N \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}$$

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} x_2 \\ x_4 \\ x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} 40 \\ 20 \\ 0 \\ 0 \end{pmatrix}$$

$$z = c^T x = 40$$

$$z = c^T x = 40$$

Pricing

• The constraints are

$$x_B = B^{-1}b - B^{-1}Nx_N$$

 $Ax = Bx_B + Nx_N = b$

• The objective is

 $z = c_B^T x_B + c_N^T x_N = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$ $= 40 + (-2 - 1) x_N = 40 - 2x_1 - x_3$

 One can increase x₁ or x₃ to reduce z

- select x_1 (q=1)

Ratio test

- How much x₁ can increase?
 - Represent x_B as a function of x_1 .
 - -(from constraint) $x_B = B^{-1}b B^{-1}Nx_N$

$$x_B = \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = B^{-1}b - B^{-1}N\begin{pmatrix} x_1 \\ 0 \end{pmatrix} = \begin{pmatrix} 40 - x_1 \\ 20 - x_1 \end{pmatrix}$$

- $-x_4$ becomes zero first
- $-x_1 = 20$, and *p*=2.

Pivoting

• $\mathcal{B} = \{2,4\}, \ \mathcal{N} = \{1,3\} \implies \mathcal{B}^+ = \{2,1\}, \ \mathcal{N}^+ = \{4,3\}$ $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \Rightarrow B^{+} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = B + \begin{pmatrix} 1 \\ 1 \end{pmatrix} (0 \ 1)$ $N = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \Rightarrow N^+ = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $B^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \Rightarrow (B^{+})^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ $(B^{+})^{-1} = B^{-1} - \frac{(B^{-1}N(:,1) - e_2)e_2^T B^{-1}}{1 + e_2^T (B^{-1}N(:,1) - e_2)}$

Second point:
$$\mathcal{B} = \{2,1\}, \mathcal{N} = \{4,3\}$$

 $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, c = \begin{pmatrix} c_B \\ c_N \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$
 $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \\ x_4 \\ x_3 \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} 20 \\ 20 \\ 0 \\ 0 \end{pmatrix}$
 $z = c^T x = 0$

Pricing

• The constraints are

$$x_B = B^{-1}b - B^{-1}Nx_N$$

 $Ax = Bx_{B} + Nx_{N} = b$

• The objective is

 $z = c_B^T x_B + c_N^T x_N = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$ $= 0 + (0 - 2) m_D = 0 - 0 m_D - 2m_D$

$$= 0 + (0 - 3)x_N = 0 - 0x_4 - 3x_3$$

 One can increase x₃ to reduce z

- select x_3 (q=2)

Ratio test

- How much x3 can increase?
 - Represent x_B as a function of x_3 .
 - -(from constraint) $x_B = B^{-1}b B^{-1}Nx_N$

$$x_{B} = \begin{pmatrix} x_{2} \\ x_{1} \end{pmatrix} = B^{-1}b - B^{-1}N\begin{pmatrix} 0 \\ x_{3} \end{pmatrix} = \begin{pmatrix} 20 - 2x_{3} \\ 20 + x_{3} \end{pmatrix}$$

- x₂ becomes zero first
- x₃ = 10, and *p*=1.

Pivoting

•
$$\mathcal{B} = \{2,1\}, \ \mathcal{N} = \{4,3\} \Rightarrow \mathcal{B}^{+} = \{3,1\}, \ \mathcal{N}^{+} = \{4,2\}$$

 $B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow B^{+} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = B + \begin{pmatrix} 0 \\ -1 \end{pmatrix} (1 0)$
 $N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow N^{+} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$
 $B^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \Rightarrow (B^{+})^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$
 $(B^{+})^{-1} = B^{-1} - \frac{(B^{-1}N(:,2) - e_1)e_1^TB^{-1}}{1 + e_1^T(B^{-1}N(:,2) - e_1)}$

Third point:
$$\mathcal{B} = \{3,1\}, \mathcal{N} = \{4,2\}$$

 $B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, N = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, c = \begin{pmatrix} c_B \\ c_N \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$
 $x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} x_3 \\ x_1 \\ x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ 30 \\ 0 \\ 0 \end{pmatrix}$
 $z = c^T x = -30$

Pricing

• The constraints are

$$x_B = B^{-1}b - B^{-1}Nx_N$$

 $Ax = Bx_{B} + Nx_{N} = b$

The objective is

 $z = c_B^T x_B + c_N^T x_N = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$ $= -30 + \left(\frac{1}{2} \quad \frac{3}{2}\right) x_N = -30 + \frac{x_2}{2} + \frac{3x_4}{2}$

One CANNOT increase
 x₂ or x₄ to reduce z
 We found the optimal solution