1. KKT condition (pg322)

$\min _{x_{1}, x_{2}}\left(x_{1}-\frac{3}{2}\right)^{2}+\left(x_{2}-\frac{1}{2}\right)^{4}$ s.t.

$$
\left[\begin{array}{l}
1-x_{1}-x_{2} \\
1-x_{1}+x_{2} \\
1+x_{1}-x_{2} \\
1+x_{1}+x_{2}
\end{array}\right] \geq 0
$$

- The first two constraints are active. Others are inactive

$$
\nabla f\left(x^{*}\right)=\left[\begin{array}{l}
-1 \\
-\frac{1}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \nabla c_{1}\left(x^{*}\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \\
& \nabla c_{2}\left(x^{*}\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- The Lagrangian multiplier
- Check KKT conditions.

$$
\lambda^{*}=\left(\frac{3}{4}, \frac{1}{4}, 0,0\right)^{T}
$$

2. Second order conditions

$$
\begin{aligned}
& \min -0.1\left(x_{1}-4\right)^{2}+x_{2}^{2} \quad 1-x_{1}^{2}-x_{2}^{2} \geq 0 \\
& L(x, \lambda)=-0.1\left(x_{1}-4\right)^{2}+x_{2}^{2}-\lambda\left(1-x_{1}^{2}-x_{2}^{2}\right) \\
& \nabla_{x} L(x, \lambda)=\binom{-0.2\left(x_{1}-4\right)+2 \lambda x_{1}}{2 x_{2}+2 \lambda x_{2}} \\
& \nabla_{x x} L(x, \lambda)=\left(\begin{array}{cc}
2 \lambda-0.2 & 0 \\
0 & 2 \lambda+2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{*}=\binom{-1}{0}, \lambda^{*}=0.5 \\
& \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0, \nabla_{x x} L\left(x^{*}, \lambda^{*}\right)=\left(\begin{array}{cc}
0.8 & 0 \\
0 & 3
\end{array}\right) \\
& \nabla_{x} c\left(x^{*}\right)=\binom{-2 x_{1}}{-2 x_{2}}=\binom{2}{0}
\end{aligned}
$$

Critical cone $\quad C(x, \lambda)=\left\{\left(0, w_{2}\right)^{T} \mid w_{2} \in R\right\}$ $w^{T} \nabla_{x x} L(x, \lambda) w=$

$$
\left(\begin{array}{cc}
0 & w_{2}
\end{array}\right)\left(\begin{array}{cc}
0.8 & 0 \\
0 & 3
\end{array}\right)\binom{0}{w_{2}}=3 w_{2}^{2}>0
$$

3. Dual problem of LP

$$
\begin{aligned}
& \min _{x} c^{T} x \text { s.t. } A x-b \geq 0 \\
& \begin{aligned}
q(\lambda) & =\inf _{x}\left[c^{T} x-\lambda^{T}(A x-b)\right] \\
& \left.=\inf _{x}\left[\left(c-A^{T} \lambda\right)^{T} x+b^{T} \lambda\right)\right]
\end{aligned}
\end{aligned}
$$

$\max _{\lambda} q(\lambda)=b^{T} \lambda$ s.t. $A^{T} \lambda=c, \lambda \geq 0$

4. Dual problem of QP

$$
\begin{aligned}
& \min _{x} \frac{1}{2} x^{T} G x+c^{T} x \text { s.t. } A x-b \geq 0 \\
& q(\lambda)=\inf _{x}\left[\frac{1}{2} x^{T} G x+c^{T} x-\lambda^{T}(A x-b)\right] \\
& \nabla_{x} q(\lambda)=\left[G x+c-A^{T} \lambda\right]=0 \\
& q(\lambda)=\frac{1}{2}\left(A^{T} \lambda-c\right)^{T} G^{-1}\left(A^{T} \lambda-c\right)+b^{T} \lambda
\end{aligned}
$$

$\max _{\lambda} q(\lambda) \quad$ s.t. $G x+c-A^{T} \lambda=0, \lambda \geq 0$

