
Matlab Optimization Toolbox

Most materials are obtained from Matlab website
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/

What it can solve?

• Unconstrained nonlinear minimization

• Constrained nonlinear minimization
• Quadratic and linear programming

• Nonlinear least-squares and curve fitting
• Constrained linear least squares

• Sparse and structured large-scale problems,
including linear programming and constrained
nonlinear minimization

• Multiobjective optimization

Function List (I)

• Unconstrained minimization
– fminunc Find minimum of unconstrained multivariable function
– fminsearch Find minimum of unconstrained multivariable function

using derivative-free method

• Constrained minimization
– fminbnd Find minimum of single-variable function on fixed interval
– Linprog Solve linear programming problems
– quadprog Solve quadratic programming problems
– fmincon Find minimum of constrained nonlinear multivariable fn
– fminimax Solve minimax constraint problem
– bintprog Solve binary integer programming problems
– fgoalattain Solve multiobjective goal attainment problems
– fseminf Find minimum of semi-infinitely constrained multivariable

nonlinear function
– ktrlink Find minimum of constrained or unconstrained nonlinear

multivariable function using KNITRO third-party libraries

Function List (II)
• Equation Solving

– fsolve Solve system of nonlinear equations
– fzero Find root of continuous function of one variable

• Least Squares (Curve Fitting)
– lsqcurvefit Solve nonlinear curve-fitting (data-fitting) problems in least-

squares sense
– lsqlin Solve constrained linear least-squares problems
– lsqnonlin Solve nonlinear least-squares (nonlinear data-fitting) problems
– lsqnonneg Solve nonnegative least-squares constraint problem

• GUI
– optimtool Tool to select solver, optimization options, and run problems

• Utilities
– fzmult Multiplication with fundamental nullspace basis
– gangstr Zero out "small" entries subject to structural rank
– optimget Optimization options values
– optimset Create or edit optimization options structure

How to use them?

• Example: Rosenbrock’s function

Use fmincon

The interface of fmincon

x = fmincon(fun,x0,A,b,Aeq,beq,…
lb,ub,nonlcon,options)

Write the objective function
function f = rosenbrock(x)

f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Write the constraint
function [c, ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];

Execution
[x,fval] = fmincon(@rosenbrock,[0 0],...

[],[],[],[],[],[],@unitdisk)

Add Options

• Matlab does have ‘struct’
• Options is a huge structure containing

– Algorithm: Chooses the algorithm used by the solver.

– Display: Level of display.
– GradObj: User-defined gradients for the objective functions.

– Hessian: User-defined Hessian or Hessian information.

– HessMult: Handle to a user-supplied Hessian multiply function.
– HessUpdate: Quasi-Newton updating scheme.

– Jacobian: User-defined Jacobian or Jacobian information.

– JacobMult:User-defined Jacobian multiply function.
– MaxIter: Maximum number of iterations allowed

– TolFun: Termination tolerance on the function value.

– …

Add Options

• Use command to set/get options
Options = optimset('Display','iter',...

'Algorithm','active-set');

• Or just Options = optimset;

Options.Display = 'iter';

Options.Algorithm = 'active-set';

– Optimset can help validating the value.

• Or you can use GUI optimtool to set them.

Gradient

• If gradient or Hessian are not provided,
Matlab uses finite difference to
approximate them (for some functions).

• To provide gradient
– Enable options: optimset(‘GradObj',‘on')

– The user function
function [f g] = rosenbrock(x)

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];
end

Algorithms and Hessian

• There are three algorithms in fmincon

1. Active-set: use quasi-Newton approximation

2. Trust-region-reflective (default): user
supplied or finite-difference approximation

3. Interior-point: many ways to define Hessian
• User-supplied Hessian:

• Quasi-Newton: optimset('Hessian','bfgs') or

• Finite differences of the gradient

optimset('Hessian','user-supplied','HessFcn',@hessi anfcn)

optimset('Hessian',{'lbfgs',positive integer});

Option HessMult

• You can define your own matrix-vector
multiplication function for Hessian

• In the trust-region-reflective algorithm
W = HessMultFcn(H,v);

• In the interior point algorithm
W = HessMultFcn(x,lambda,v);

optimset('Hessian','user-supplied',...
'SubproblemAlgorithm','cg', ...
'HessMult',@HessMultFcn);

