
CS1356 Introduction to Information Engineering

Homework 5
Due: Dec 16, 2009 in class

Remember to write your name and student ID

1. We call a DVD is played smoothly if it can be played 30 frames per second uniformly.

Suppose you want to play two DVDs simultaneously on a single core computer, which takes

10 microsecondsms to display a frame, and takes 1 microsecondms for context switch. What

is the longest length of a time slice to make both DVDs played smoothly? Assuming no other

programs are executed at the same time. And what is the shortest length of a time slice to do

so? Justify your answers. (20%)

Ans: There must be at least 60 time slices per second to make 2 DVDs played smoothly.

 Otherwise, the frames cannot be played uniformly.

 So the longest length of a time slice is (1000ms – 1ms*60)/60 = 15.67ms.

 On the other hand, the minimum length of time to play 2 DVD per second is

10ms*30 frames*2 DVD = 600ms. Thus, the maximum length of time for context

switch is 1000ms – 600ms=400ms, so there are at most 400ms/1ms=400 context

switches. According to that, the shortest length of a time slice is

(1000ms – 1ms*400)/400=1.5ms.

*** In the original settings, the answers will be 16.67ms and 0.6004ns, which is unreasonable.

But the main idea is the same: the length of a time slice cannot be too long and cannot be too

short.

2. A barrier for a group of threads/processes in the source code means any thread/process must

stop at this point and cannot proceed until all other threads/processes reach this barrier. The

following code uses a global variable count, whose initial value is 8, to implement a barrier

for 8 threads/processes. (20%)

(1) Give an example to show this code could fail in a

single CPU multitasking environment.

(2) How to fix this code to make it work? Justify your

answers.

count = count – 1;

while (count > 0);

// barrier point

Ans: (1) In the instruction level, the statement “count=count–1;” will be translated into at

least 3 instructions.

A scenario that fails the statements is when one process, say process A, had executed instruction

1, and then the OS context switched to another process, say process B; and process B finishes

instruction 1, 2, 3, and then the OS context switched back to process A.

To make it clear, let us assume that count = 2 in the beginning of this scenario. And the

execution history like the follows.

Executed process Executed instruction Value of count in memory

A Instruction 1 2

B Instruction 1 2 (R1=2 now)

B Instruction 2 2 (R3 = 1)

B Instruction 3 1 (R3 is written back)

A Instruction 2 1 (R3 = 1)

A Instruction 3 1 (R3 is written back)

(2) You can use either test_set() function, or use the disable_interrupt() and enable_interrupt()

functions, to enclose the “count=count–1;” statement. But if you use test_set(), you need

to use while-loop to keep trying.

** There is a bug in the program which is usually overlooked. That is, most compilers will use

the value in registers to execute the statements “count=count–1; while (count>

0);”, which will make the changes in memory useless. To make compiled code to read

variable from memory every time, the modifier “volatile” should be used in the declaration of

variable “count”.

1. Read variable count from memory to a register, say R1

2. Perform R3 = R1-R2 (assume the value in R2 is 1)

3. Store the value in R1 to the memory cell of count

disable_interrupt();

count = count – 1;

enable_interrupt();

while (count > 0);

while (1){

if (test_set(flag)) {

count = count – 1;

break;

 }

}

flag = 0;

while (count > 0);

volatile int count = 0;

3. Textbook uses an example to illustrate the deadlock situation, as shown in the figure. The

solutions to resolve deadlock are attacking one of the following conditions.

(1) Competition for non-sharable resources

(2) Resources requested on a partial basis

(3) Allocated resources cannot be forcibly retrieved.

(4) Circular wait.

For each condition, can you think a solution to attack it so that the

deadlock is resolved? Your solutions CANNOT change the topology of the

railroads, but you can add new facilities to it, or design new rules for train operations. (40%)

Ans: Here are just some examples for each case.

(1) Add overpasses or underpasses to the crossed railroad.

(2) Use a traffic light to indicate if there is any train passing

the crossed section. If so, other train cannot pass

(3) Let one of the train back up when a deadlock happens

(4) Do not allow both trains go from opposite directions.

For instance, you only allow both trains go from bottom

to top, as shown in the figure.

4. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart)

is a system designed to distinguish computer and human. A common type of CAPTCHA

requires user to type letters or digits from a distorted image, as the following one. (20%)

(1) Nowadays, this technique is often used with the authentication

process. What kind of security attack can this mechanism prevent?

(2) Explain how this technique can be used to attack (email) spam filters?

Ans: (1) This can be used to prevent robot programs to attack servers, such as dictionary

attack or sending spam emails.

(2) Since most spam filter will check the content of emails, if you use the distorted image in

the email, the spam filter will not be able to know what the content is.

