A Simple Machine Language

Sep 22, 2009

The Machine's Architecture

- 16 general-purpose registers - numbered 0 through F (in hexadecimal)
- Each register is
- one byte (8 bits) long
- assigned
to represent its
register number
- E.g.

0000 (0x0) -> register 0
0100 (0x4) -> register 4

The Machine's Architecture (Cont.)

\triangleleft Main memory

- 256 memory cells
- Each cell is located by an integer \diamond
- Floating-point values are stored in the eight-bit format disscussed in Section 1.7 and summarized in Figure 1.26

The Machine's Language

- Machine language
- two bytes (16 bits) long
- op-code field -> leftmost 4 bits
- operand field -> the remaining 12 bits

Simulator (Java version)

CPU			
R0	00		
R1	00		
R2	00		
R3	00		
R4	00		
R5	00		
R6	00		
R7	00	PC	00
R8	00	IR	0000
R9	00		
RA	00		
RB 00			
RC	00		
RD	00		
RE	00		
RF	00		

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 1 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 2 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 3 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 4 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 5 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 6 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 7 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 8 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| 9 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| A | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| B | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| C | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| D | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| E | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |
| F | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 | 00 |

Clear Memory	Load Data	Run	Single Step	Halt	Help

Example

\diamond From Questions \& Exercises

- Suppose the memory cells at addresses B0 to B8 in the machine described in Appendix C contain the (hexadecimal) bit patterns given in the following table:

Address	Contents
B0	13
B1	B8
B2	A3
B3	02
B4	33
B5	B8
B6	C0
B7	00
B8	OF

Example (Cont.)

a. If the program counter starts at B0, what bit pattern is in register number 3 after the first instruction has been executed?

Syntax

[PC] B0
 [B0] 13 B8 A3 02 33 B8 C0 00 0F

Load Data

Load Data (Cont.)

(8imple Computer																	\square	X
Data Input Window																		
$\begin{aligned} & {[\mathrm{PC}] \mathrm{B0}} \\ & {[\mathrm{BO}] 13 \mathrm{~B} 8 \mathrm{~A} 30233 \mathrm{~B} 8 \mathrm{C} 0000 \mathrm{~F}} \end{aligned}$																		
CPU	Main Memory																	
R0 00	0		1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
R1 00	0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R2 00	1	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R3 00	2	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R4 00	3	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R5 00	4	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R6 00	5	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R7 00 PC B0)	6	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R8 00 IR 0000	7	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
R9 00	8	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
RA 00	9	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
RB 00	A	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
RC 00	B	13	B8	A3	02	33	B8	C0	00	OF	00	00	00	00	00	00	00	
RD 00	C	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
RE 00	D	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
RF 00	E	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	F	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
	Clear Memory			Load Data			Run		Single Step		Halt		Help					

The Result of Sub-problem a

Example (Cont.)

b. What bit pattern is in memory cell B8 when the halt instruction is executed?

The Result of Sub-problem b

