Data Representation

Binary system

- Computers uses 0 and 1 to represent and store all kinds of data.
-Why binary?
- We need to find physical objects/phenomenon to store, transmit, and process data. Binary is the most straightforward representation.

2009/9/16
CS135601 Introduction to Information Engineering

O Some jargons

- Bit: a binary digit (0 or 1)
- Byte: 8 bits
- Basic storage unit in computer system
- Hexadecimal notation:
- Represents each 4 bits by a single symbol
- Example: A3 denotes 10100011

O More jargons

- Kilobyte: 2^{10} bytes $=1024$ bytes $\approx 10^{3}$ bytes
- Example: $3 \mathrm{~KB} \approx 3 \times 10^{3}$ bytes
- Megabyte: 2^{20} bytes $\approx 10^{6}$ bytes
- Example: $3 \mathrm{MB} \approx 3 \times 10^{6}$ bytes
- Gigabyte: 2^{30} bytes $\approx 10^{9}$ bytes
- Example: $3 \mathrm{~GB} \approx 3 \times 10^{9}$ bytes
- Terabyte: 2^{40} bytes $\approx 10^{12}$ bytes
- Example: 3 TB $\approx 3 \times 10^{12}$ bytes

Data Representation in Bit Patterns

Text, number, image, and sound

O Text data

- Each character is assigned a unique bit pattern.
- ASCII code
- American Standard Code for Information Interchange
- Uses 7-bits to represent most symbols used in English text

0100100001100101011011000110110000110111100101110 Hel e

- Quiz: how many different bit patterns can be represented by 7 bits?

Big5 code

－For Chinese character encoding
－Uses 16 bits to represent a character
－But does not use all（A140－F9FF）
－Example

我	身	騎	白	馬
A7DA	A8AD	C34D	A5D5	B0A8

Display characters

－Computer doesn＇t show the codes directly to us．It displays what we can read．

－Those images for displaying characters are called fonts．
－We will talk about images later．

Unicode

－Uses 16 －bits to represent the major symbols used in languages world side

ت	T	$\stackrel{2}{2}$	仯	$\underset{\text { x\％}}{\substack{\text { 㑰 }}}$	㒀	$\hat{\mathrm{E}}$	Ú	$\hat{\mathrm{e}}$	W1	খ	\square
تـ	$\underset{E B 63}{ }$	ي	$\underset{\substack{\text { 㑡 } \\ \text { 361 }}}{ }$	$\underset{\substack{\text { 伃 }}}{\substack{\text { and }}}$	個墶	$\underset{\text { ExB }}{\ddot{\mathrm{E}}}$	$\hat{\mathrm{U}}$	ë	₹	গ	ε
Arabic char			CJK char			Latin char			Indic char		

ONumbers

－We can use 4 bits to represent decimal digits $0,1,2,3,4,5,6,7,8,9$
－This is called＂Binary－coded decimal＂（BCD）representation
－Problems
－We waste last 6 bit－patterns of 4 bits

	$B C D$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

2009／9／16
CS135601 Introduction to Information Engineering
12

O Binary numeral system

- Uses bits to represent a number in base-2
a. Base ten system
b. Base two system
$\left.\begin{array}{llllll}1 & 0 & 1 & 1 & \text {]-Representation } \\ & 5 & 0 & 8 \\ \hline & 5 & 0\end{array}\right]$
- Position's quantity

Position's quantity

- We put a subscript b to a number for binary, and a subscript d for decimal.
-10_{d} is number ten, and 10_{b} is number two.
2009/9/16 CS135601 Introduction to Information Engineering

O Decimal to binary

- What is the binary number of 13 ?
- First, how many bits we need for 13.
- Since $13<16=2^{4}, 4$ bits can represent 13 .
$13=b_{3} \quad b_{2} \quad b_{1} \quad b_{0}=b_{3} \times 8+b_{2} \times 4+b_{1} \times 2+b_{0} \times 1$
- Second, decide b_{0} is 0 or 1 .
- Since 13 is odd, b_{0} must be 1 .
- Then? How to decide b_{1}.
- You can do $\left(13-b_{0}\right) / 2=6=b_{3} \times 4+b_{2} \times 2+b_{1} \times 1$.
- Since 6 is even, b_{1} must be 0 .

O Binary to decimal

- What is the decimal number of 100101_{b} ?
of bit quantity
- We can use the same way to decide b_{2} and b_{3}.
- $\left(6-b_{1}\right) / 2=3=b_{3} \times 2+b_{2} \times 1$ is odd, so b_{2} is 1 .
- $\left(3-b_{2}\right) / 2=1=b_{3} \times 1, b_{3}$ must be 1 .
- So, $13_{d}=1101_{b}$
- You have your first algorithm here

Step 1. Divide the value by two and record the remainder.
Step 2. As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.

OBinary number calculations

- Binary number is easy for calculations
- For example, the one bit addition

$$
\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
+0 \\
\hline 0 & +0 & +1 & +1 \\
\hline 1
\end{array}
$$

- So, what is $5_{d}+9_{d}$ in binary number form?

2009/9/16

Another example

```
1111
0 0 1 1 1 0 1 0
+ 00011011
01010101
```


O Negative numbers

- How to represent $-1,-2, \ldots$ on a computer?
- Solution 1: use an extra bit to represent the negatives sign.
- It is called the sign bit, in front of numbers.
- Usually, 0 is for positives; 1 is for negatives.
- Example: 10001 is -1 and 00100 is +4
- But how can we to do the addition $(-1)+(4)$ efficiently?

- Solution 2

- The negative sign "-" just means the "opposite" or the "inverse".
- For example, the opposite of east is west. (why is not south or north?)
- For addition, the inverse of a number d, denoted $\mathrm{I}(\mathrm{d})$, has the property: $\mathrm{I}(\mathrm{d})+\mathrm{d}=0$.
- We can use this to define negative numbers.

O Two's complement

- A simple algorithm to find the inverse*

1. Change each bit 0 to 1 and bit 1 to 0
2. Add 1.

- This number representation is called the "two's complement".
- *Textbook uses a different algorithm

What are the decimal numbers for the following 2 's complement representations?
(a) 00000001
(b) 01010101
(c) 11111001
(d) 10101010
(e) 10000000
(f) 00110011

- Find the negative value represented in 2's complement for each number

OCalculation with 2's complement

- Calculation can be made easily for two's complement representation.

OFractions

- The binary number of fractions.
- Problem: where to put the decimal point?

O Floating point

- To represent a wide range of numbers, we allow the decimal point to "float".

$$
40.1_{\mathrm{d}}=4.01_{\mathrm{d}} \times 10^{1}=401_{\mathrm{d}} \times 10^{-1}=0.401_{\mathrm{d}} \times 10^{2}
$$

- It is just like the scientific notation of numbers.
$101.101_{b}=+1.01101_{b} \times 2^{2_{d}}=+1.01101_{b} \times 2^{10_{b}}$.
- This is called the floating point representation of fractions.

O Truncation error

- Mantissa field is not large enough $-25 / 8=2.625 \Rightarrow 2.5+$ round off error (0.125)
- Nonterminating representation
$-0.1=1 / 16+1 / 32+1 / 256+1 / 512+\ldots$
- Change the unit of measure
- Order of computation:

$$
-2.5+0.125+0.125 \Rightarrow \mathbf{2 . 5}+\mathbf{0}+\mathbf{0}
$$

Exercises

- What are the fractions for the following floating number representations?
- Suppose 1 bit for sign, 3 bits for exponent (using excess notation), 4 bits for mantissa
(a) 01001010 (b)
(b) 01101101 (c) 11011100 (d
(d) 10101011
- If direct truncation is used, what are the ranges of their possible values?

Images

- Image representation depends on what the output device can display.
- For example, an image on the seven segment can be represented by 7 bits.

No	Img	Repre.	3	三	1111001	7	1	1100000
0	-	1111110	4	-1	0110011	8	E	1111111
1	1	0110000	5	E	1011011	9	E	1111011
2	三	1101101	6	E	1011111	A	1	1110111
20099/16		CS135601 Introduction to Information Engineering						32

Common output devices

- The cathode ray tube (CRT) uses raster scan.
- The liquid crystal display (LCD) is consisted of an array of crystal molecules.

- Most printers use dots to compose images.

Vector graph image

- When scaled up, a bitmap image shows the zigzag effect.
- Vector graph images store the

BITMAP mathematical formula for lines, shapes and colors of the objects in an image.

- Example: TrueType font
- Rasterisation: courier New AAAA
- a process converting courier $A A A A$ vector graph to raster image.

Raster image (bitmap)

- Represent an image by a rectangular grid of pixels (short for "picture element")
- Each pixel is composed by three values: R, G, B.

Sound

- Sound is an acoustic wave
- A simple wave can be characterized by amplitude and frequency.
- The larger amplitude the louder the sound
- The higher frequency the higher pitch
- All sound can be composed by simple waves.
- MIDI file

4

- Represent sounds by the amplitude and frequency of composed simple waves.

Sampled sound

- The sound composed by simple waves may not sound real.
- Alternatively, sampling the real sound and record it
- Quality of sampled sound is measured by
- Sampling rate: how often to do the sampling
- Bit depth: bits used for one sample
- CD music has sampling rate 44.1 kHZ and uses 16 bits for each sample.

Binary Operations and Logic Gate

Basic operations for binary data and the physical devices to implement them.

O Logic data

- Logic data: either true or false.
- Logic operation
- If the room is dark and someone is in the room, turn on the light.
- Use binary ($0 / 1$) representation
Room is dark $\left\{\begin{array}{l}\text { Yes (1) } \\ \text { No (0) }\end{array} \quad\right.$ Someone in the room $\left\{\begin{array}{l}\text { Yes (1) } \\ \text { No (0) }\end{array}\right.$
Light is on $\left\{\begin{array}{r}\text { Yes (1) } \\ \begin{array}{l}\text { No (0) }\end{array} \\ \text { CS135601 Introduction to Information Engineering }\end{array}\right.$

O The AND function

- We can use the AND function to represent the statement

Room is dark A	Someone in the room B	Light is on A.AND. B
0	0	0
0	1	0
1	0	0
1	1	1
${ }_{20099916} \quad \begin{aligned} & \text { Input } \\ & \text { csi35601 Intoduction to information Engineering }\end{aligned}$ Output		

OBoolean operators

- The AND function is a Boolean operator.
- Boolean operator is an operation that manipulates one or more $0 / 1$ values.
- Other common Boolean operations

OR			XOR (exclusive or)				NOT	
Input		Output	Input		Output			
0	0	0	0	0	0		Input	Output
0	1	1	0	1	1		0	1
1	0	1	1	0	1		1	0

O Logic gate

- We call a device that implements a Boolean operation a gate
- Pictorial representation of gates

CS135601 Introduction to Information Engineering
43

O Example

- Almost all operations of computers can be carried out by logic gates
- The textbook uses flip-flop as an example.
- We will use "one bit adder" as an example.
- One bit adder has two inputs and two outputs (S: sum, C: carry)

O Implementation of one bit adder

- The truth table of an one-bit adder
- Compare it to the truth table of Boolean function AND, OR, XOR, NOT
$-S=A . X O R . B$
$-\mathrm{C}=\mathrm{A} . A N D . \mathrm{B}$

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$
-\mathrm{C}=\mathrm{A} . \mathrm{AND} . \mathrm{B}
$$

- Can we flip the switches without hands?

2009/9/16
CS135601 Introduction to Information Engineering 47

What can be a gate?

- LEGO's "mechanical gates"
- The AND gate

Electronic switch

- The earliest one is the vacuum tube - 1884, Thomas Edison

Transistor

- The problems of vacuum tubes are slow, large, expensive, easy to break.
- Transistor can make it faster, smaller, and more robust.

How transistor works (2/5)

- In the n-type transistor, both the source and the drain are negatively-charged and sit on a positively-charged well of p-silicon.

How transistor works (3/5)

- When positive voltage is applied to the gate, electrons in the p-silicon are attracted to the area under the gate forming an electron channel between the source and the drain.

How transistor works (4/5)

- When positive voltage is applied to the drain, the electrons are pulled from the source to the drain.
In this state the transistor is on.

O Integrated circuit (IC)

- An electronic circuit consisted of transistors and other components in the thin substrate of semiconductor material.
- Also known as IC, microchip, or chip.
- Invented by Jack Kilby and Robert Noyce - 2000 Nobel Prize in Physics
- VLSI: Very-Large-Scale IC
- More than million transistors

How transistor works (5/5)

- If the voltage at the gate is removed, electrons are not attracted to the area between the source and drain. The pathway is broken and the transistor is turned off.

Exercises

- What input bit patterns will cause the following circuit to output 1? And output 0 ?

- What Boolean operation does the circuit compute?

Data storage and transmission

Memory, RAM, address
CD/DVD, hard disk, flash memory signal, communication media

O Memory

- Memory is used inside computers for temporary storages.
- They are often called RAMs
- Random Access Memory: data can be accessed in any order
- Dynamic RAM (DRAM):
- Synchronous DRAM (SDRAM)
- Static RAM (SRAM)

O Storage media

- Physical objects that can store bits and retrieve them can be a storage media.
- Volatile (temporary) memory:
- DRAM, SRAM, SDRAM
- Non-volatile storage (massive storage)
- Optical Systems: CD, DVD
- Magnetic Systems: Hard disk, tape
- Flash drives: IPod, Cell Phone, USB drivers...

O Data storage unit

- To efficiently access data, computers use 8 bits (a byte) as a smallest storage unit.
- Some jargons for a byte
- Most significant bit: at the high-order end
- Least significant bit: at the low-order end

O Memory address

- Each storage unit in memory is numbered by an address so that data can be stored and loaded.
- These numbers are assigned consecutively starting at zero.

Hard disks (HDD)

Some terms of hard disk

Flash memory

- Use electrical charge to represent $0 / 1$

O Data transfer

- Many media can transfer binary data
- Voltage
- Voltage

- Voice: telephone line (modem)
- Electromagnetic wave: radio
- Light: infrared, laser, fiber optics

O Data communication rates

- Measurement units
- Bps: Bits per second
- Kbps: Kilo-bps (1,000 bps)
- Mbps: Mega-bps (1,000,000 bps)
- Gbps: Giga-bps (1,000,000,000 bps)
- Multiplexing: make single communication path as multiple paths
- Bandwidth: maximum available rate

Data Processing

Compression, error correction, encryption

O Many compression techniques

- Lossy versus lossless
- Run-length encoding
- Frequency-dependent encoding
(Huffman codes)
- Relative encoding
- Dictionary encoding (Includes adaptive dictionary encoding such as LZW encoding.)

O Data compression

- Purpose: reduce the data size so that data can be stored and transmitted efficiently.
- For example,
- 0000000000111111111 can be compressed as (10,0,9,1)
-123456789 can be compressed as $(1,1,9)$
- AABAAAABAAC can be compressed as 11011111011100, where A, B, C are encoded as 1,01 , and 00 respectively.

Different data has different

 compression methods- Image data
- GIF: Good for cartoons
- JPEG: Good for photographs
- TIFF: Good for image archiving
- Video: MPEG
- High definition television broadcast
- Video conferencing
- Audio: MP3
- Temporal masking, frequency masking

CS135601 Introduction to Information Engineering

O Error detection

- During transmission, error could happen.
- For example, bit $0 \rightarrow 1$ or bit $1 \rightarrow 0$.
- How could we know there is an error?
- Adding a parity bit (even versus odd)

Exercises

- Using the error correction code table to decode the following message

Character	Code
A	000000
B	001111
c	010011
D	011100
E	100110
F	101001
G	110101
H	111010

001111100100001100010001 000000001011011010110110 100000011100

- The following bytes are encoded using odd parity.
Which of them definitely has an error
(a) 10101101
(b) 10000001
(c) 11100000 (d
d) 11111111

O Data encryption

- Suppose Alice wants to send a secret message, 10110101, to Bob
- If they both know a key, 00111011, that no one else knows.
- Alice can send the encrypted message to Bob using XOR, and Bob can decrypt it the same

2009/9/16

Secret key encryption

－This is called the secret key encryption．
－If no one else knows the secret key and the key is generated randomly and used only once，this is a very good encryption algorithm
－Problems：
－the key can be used only once

－Alice and Bob both need to know the key

Related courses

－Data storage，representation，processing

References

－http：／／computer．howstuffworks．com／
－http：／／en．wikipedia．org／
－http：／／www．weethet．nl／english／
－http：／／goldfish．ikaruga．co．uk／logic．html
－http：／／www．mandarinpictures．com／stephenzinn／images／a a－raster－1．gif
－Textbook：most materials are from chapter 1
－Communication media is in 2.5
－Vector graph and rasterization are in 10.4
－Data encryption
－離散數學，離散結構專題，密碼與網路安全概論

