CS3331 Numerical Methods

Quiz 8, Dec 30

Name: \qquad ID: \qquad

1. Given a vector $\mathbf{y}=\left[\begin{array}{lll}13 & 074265\end{array}\right]^{T}$.
(a) Rearrange the elements of \mathbf{y} in the bit-reverse order. (10pt)

The bit-reverse order is $[0,4,2,6,1,5,3,7]$.
So the reversed vector becomes [14063275] ${ }^{T}$
(b) The non-recursive FFT processes the bit-reversed vector in $O\left(\log _{2}(n)\right)$ loops. What does the vector become after one loop? (10pt)

$$
\left(\begin{array}{l}
1+4 \\
1-4 \\
0+6 \\
0-6 \\
3+2 \\
3-2 \\
7+5 \\
7-5
\end{array}\right)=\left(\begin{array}{c}
5 \\
-3 \\
6 \\
-6 \\
5 \\
1 \\
12 \\
2
\end{array}\right)
$$

2. $f(x)=c_{1} \cos (x)+c_{2}\left|\frac{2 x}{\pi}-1\right|$ approximates $(0,1),\left(\frac{\pi}{2}, 2\right),(\pi, 3),\left(\frac{3 \pi}{2}, 4\right)$ in the least square sense.
(a) Write down the formula of normal equation and the matrix \mathbf{A} of this problem. (10pt)

Normal equation: $\mathbf{A}^{T} \mathbf{A x}=\mathbf{A}^{T} \mathbf{b}$

$$
\mathbf{A}=\left(\begin{array}{cc}
\cos (0) & \left|\frac{2}{\pi} 0-1\right| \\
\cos (\pi / 2) & \left|\frac{2}{\pi} \frac{\pi}{2}-1\right| \\
\cos (\pi) & \left|\frac{2}{\pi} \pi-1\right| \\
\cos (3 \pi / 2) & \left|\frac{2}{\pi} \frac{3 \pi}{2}-1\right|
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right)
$$

(b) What are c_{1} and c_{2} ? (10pt)

$$
\begin{gathered}
\mathbf{A}^{T} \mathbf{A}=\left(\begin{array}{ll}
2 & 0 \\
0 & 6
\end{array}\right), \mathbf{A}^{T} \mathbf{b}=\binom{-2}{12} \\
\left(\begin{array}{ll}
2 & 0 \\
0 & 6
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-2}{12} \\
\binom{c_{1}}{c_{2}}=\binom{-1}{2}
\end{gathered}
$$

(c) What is the least square error? (10pt)

$$
\mathbf{b}-\mathbf{A}\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)-\left(\begin{array}{cc}
1 & 1 \\
0 & 0 \\
-1 & 1 \\
0 & 2
\end{array}\right)\binom{-1}{2}=\left(\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right)
$$

Least square error is $0+2^{2}+0+0=4$

