CS3331 Numerical Methods

Quiz 7, Dec 19

Name: \qquad ID: \qquad

1. Compute the quadratic polynomial that interpolates the data points,

$$
(x, f(x))=(0,2),(1,5),(2,3)
$$

(The polynomial need not be expanded.)
(a) Use Lagragnge form. (10pt)

$$
p(x)=2 \frac{(x-1)(x-2)}{(0-1)(0-2)}+5 \frac{(x-0)(x-2)}{(1-0)(1-2)}+3 \frac{(x-0)(x-1)}{(2-0)(2-1)}
$$

$p(x)=-5 / 2 x^{2}+11 / 2 x+2$ if you expand it.
(b) Use divided difference method. (10pt)

0	2		
1	5	$\frac{5-2}{1-0}=3$	
2	3	$\frac{3-5}{2-1}=-2$	$\frac{-2-3}{2-0}=-5 / 2$

$p(x)=-5 / 2 x^{2}+11 / 2 x+2$ if you expand it.
2. How many unknowns and how many equations are given if the 4th degree piecewise polynomials, $f_{i}(x)=a_{i, 4} x^{4}+a_{i, 3} x^{3}+a_{i, 2} x^{2}+a_{i, 1} x+a_{i, 0}$, are used to interpolate n data points, $n \geq 2$, such that the function value, first derivative, second derivative, and third derivatives are continuous? (10pt).

Unknowns: $5(n-1)$

- $n-1$ polynomials, and each has 5 unknowns.

Equations: $5 n-8$

- Continuity of function values: $2(n-1)$
- Continuity of first, second, and third derivatives:

$$
(n-2)+(n-2)+(n-2)
$$

3. Suppose a polynomial

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

interpolates data points $(x, f(x))=(0,1),(1,5),(2,3)$, and the derivative at $1, f^{\prime}(1)=2$. What are c_{0}, c_{1}, c_{2}, and c_{3} ? (20pt)

There are many ways to compute it. Here uses the divided differences

0	1			
1	5	$\frac{5-1}{1-0}=4$		
1	5	$f^{\prime}(1)=2$	$\frac{2-4}{1-0}=-2$	
2	3	$\frac{3-5}{2-1}=-2$	$\frac{-2-2}{2-1}=-4$	$\frac{-4-(-2)}{2-0}=-1$

$$
\begin{aligned}
p(x) & =1+4(x-0)-2(x-0)(x-1)-1(x-0)(x-1)^{2} \\
& =1+5 x+0 x^{2}-x^{3} \\
c_{0}=1, c_{1}= & 5, c_{2}=0, c_{3}=-1
\end{aligned}
$$

