CS3331 Numerical Methods

Quiz 7, Dec 19

Name: _____, ID: _____

1. Compute the quadratic polynomial that interpolates the data points,

(x, f(x)) = (0, 2), (1, 5), (2, 3)

(The polynomial need not be expanded.)

(a) Use Lagragnee form. (10pt)

 $p(x) = 2\frac{(x-1)(x-2)}{(0-1)(0-2)} + 5\frac{(x-0)(x-2)}{(1-0)(1-2)} + 3\frac{(x-0)(x-1)}{(2-0)(2-1)}$ $p(x) = -5/2x^2 + 11/2x + 2$ if you expand it.

(b) Use divided difference method. (10pt)

2. How many unknowns and how many equations are given if the 4th degree piecewise polynomials, $f_i(x) = a_{i,4}x^4 + a_{i,3}x^3 + a_{i,2}x^2 + a_{i,1}x + a_{i,0}$, are used to interpolate *n* data points, $n \ge 2$, such that the function value, first derivative, second derivative, and third derivatives are continuous? (10pt).

Unknowns: 5(n-1)

• n-1 polynomials, and each has 5 unknowns.

Equations: 5n - 8

- Continuity of function values: 2(n-1)
- Continuity of first, second, and third derivatives: (n-2) + (n-2) + (n-2)
- 3. Suppose a polynomial

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

interpolates data points (x, f(x)) = (0, 1), (1, 5), (2, 3), and the derivative at 1, f'(1) = 2. What are c_0, c_1, c_2 , and c_3 ? (20pt)

There are many ways to compute it. Here uses the divided differences $\begin{array}{c|c}
0 & 1 \\
\hline
5 & 1
\end{array}$

1 5	$\frac{5-1}{1-0} = 4$			
1 5	f'(1) = 2	$\frac{2-4}{1-0} = -2$		
2 3	$\frac{3-5}{2-1} = -2$	$\frac{-2-2}{2-1} = -4$	$\frac{-4 - (-2)}{2 - 0} = -1$	
$p(x) = 1 + 4(x - 0) - 2(x - 0)(x - 1) - 1(x - 0)(x - 1)^{2}$ = 1 + 5x + 0x ² - x ³				

 $c_0 = 1, c_1 = 5, c_2 = 0, c_3 = -1$