CS3331 Numerical Methods

Quiz 6, Dec 12

Name: \qquad , ID: \qquad
Decompose $\mathbf{A}=\mathbf{L}+\mathbf{D}+\mathbf{U}$, where \mathbf{L} is the lower triangular part; \mathbf{D} is the diagonal part; and \mathbf{U} is the upper triangular part. The formulas of three iterative methods are

- Jacobi method: $\mathbf{x}^{(k+1)}=\mathbf{D}^{-1}(-\mathbf{L}-\mathbf{U}) \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}$
- Gauss-Seidel method: $\mathbf{x}^{(k+1)}=-(\mathbf{D}+\mathbf{L})^{-1} \mathbf{U} \mathbf{x}^{(k)}+(\mathbf{D}+\mathbf{L})^{-1} \mathbf{b}$
- Successive over relaxation (SOR): $\mathbf{x}^{(k+1)}=(\mathbf{D}+\omega \mathbf{L})^{-1}\left[((1-\omega) \mathbf{D}-\omega \mathbf{U}) \mathbf{x}^{(k)}+\omega \mathbf{b}\right]$

1. True or false. (20pt)
a (F) The diagonal elements of $\mathbf{D}^{-1}(-\mathbf{L}-\mathbf{U})$ are the reciprocals of A's diagonal elements.
b (F) The eigenvalues of a strictly diagonal dominant matrix are all positive.
c (T) The eigenvalues of a symmetric positive definite matrix are all positive.
$\mathrm{d}(\mathrm{F})$ If $\left\|\mathbf{D}^{-1}(-\mathbf{L}-\mathbf{U})\right\|>1$, then Jacobi method cannot converge.
e (T) If \mathbf{A} is symmetric and strictly diagonal dominant, then Gauss-Seidel method guarantees convergence.
f (F) Gauss-Seidel method always converges faster than Jacobi method.
$\mathrm{g}(\mathrm{T})$ The determinant of $(\mathbf{D}+\mathbf{L})^{-1} \mathbf{U}$ equals to 0 .
h (F) In SOR, $0<\omega<2$ can guarantee the convergence.
i (T) The determinant of $(\mathbf{D}+\omega \mathbf{L})^{-1}((1-\omega) \mathbf{D}-\omega \mathbf{U})$ is $(1-\omega)^{n}$, where n is the size of \mathbf{A}.
j (F) The spectral radius of \mathbf{A} is the largest singular value of \mathbf{A}.
2. The new vector of SOR $\mathbf{x}^{(k+1)}$ is a linear combination of the previous one $\mathbf{x}^{(k)}$ and the vector generated by Gauss-Seidel.

$$
\mathbf{x}^{(k+1)}=(1-\omega) \mathbf{x}^{(k)}+\omega\left[-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{U} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}\right] .
$$

Prove that $\mathbf{x}^{(k+1)}=(\mathbf{D}+\omega \mathbf{L})^{-1}\left[((1-\omega) \mathbf{D}-\omega \mathbf{U}) \mathbf{x}^{(k)}+\omega \mathbf{b}\right]$. (10pt) (No partial credits. Giving up or leaving it blank get 3 points.)

$$
\begin{aligned}
\mathbf{x}^{(k+1)} & =(1-\omega) \mathbf{x}^{(k)}+\omega\left[-\mathbf{D}^{-1} \mathbf{L} \mathbf{x}^{(k+1)}-\mathbf{D}^{-1} \mathbf{U} \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{b}\right] \\
\mathbf{D}^{-1}(\mathbf{D}+\omega \mathbf{L}) \mathbf{x}^{(k+1)} & =\left[(1-\omega) \mathbf{I}-\omega \mathbf{D}^{-1} \mathbf{U}\right] \mathbf{x}^{(k)}+\omega \mathbf{D}^{-1} \mathbf{b} \\
(\mathbf{D}+\omega \mathbf{L}) \mathbf{x}^{(k+1)} & =[(1-\omega) \mathbf{D}-\omega \mathbf{U}] \mathbf{x}^{(k)}+\omega \mathbf{b} \\
\mathbf{x}^{(k+1)} & =(\mathbf{D}+\omega \mathbf{L})^{-1}\left[((1-\omega) \mathbf{D}-\omega \mathbf{U}) \mathbf{x}^{(k)}+\omega \mathbf{b}\right]
\end{aligned}
$$

3. Let $\mathbf{A}=\left(\begin{array}{cccc}2 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 1 & 2\end{array}\right), \mathbf{b}=\left(\begin{array}{l}0 \\ 2 \\ 0 \\ 2\end{array}\right)$ and $\mathbf{x}^{(0)}=\left(\begin{array}{l}6 \\ 0 \\ 2 \\ 4\end{array}\right)$. Use GaussSeidel method to compute $\mathbf{x}^{(1)}$. (20pt)

$$
\begin{aligned}
x_{1}^{(1)}= & -1 / 2 * 0-1 / 2 * 4+0 / 2=-2 \\
x_{2}^{(1)}= & 0 / 2 *(-2)-1 / 2 * 4+2 / 2=-1 \\
x_{3}^{(1)}= & -1 / 2 *(-2)+0 / 2=1 \\
x_{4}^{(1)}= & -1 / 2 *(-2)-1 / 2 * 1+2 / 2=1.5 \\
& \mathbf{x}^{(1)}=\left(\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)} \\
x_{4}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
1 \\
1.5
\end{array}\right)
\end{aligned}
$$

