CS3331 Numerical Methods

Quiz 5, Nov 28th

Name: \qquad ID: \qquad

1. Let $\mathbf{A}=\left(\begin{array}{cccc}4 & 9 & 1 & 3 \\ 0 & 8 & 0 & 5 \\ 0 & 0 & 7 & 2 \\ 0 & 6 & 0 & 10\end{array}\right)$ and $\mathbf{p}=\left(\begin{array}{c}0.5 \\ 0.5 \\ 0.5 \\ 0.5\end{array}\right)$ be an approximation to A's eigenvector.
(a) Compute the Rayleigh quotient of \mathbf{p}. (10pt)
$\mathbf{p}^{T} \mathbf{p}=1$. The Rayleigh quotient is

$$
\frac{\mathbf{p}^{T} \mathbf{A} \mathbf{p}}{\mathbf{p}^{T} \mathbf{p}}=\left(\begin{array}{llll}
0.5 & 0.5 & 0.5 & 0.5
\end{array}\right)\left(\begin{array}{cccc}
4 & 9 & 1 & 3 \\
0 & 8 & 0 & 5 \\
0 & 0 & 7 & 2 \\
0 & 6 & 0 & 10
\end{array}\right)\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5 \\
0.5
\end{array}\right)=55 / 4
$$

(b) Use the computed Rayleigh quotient, μ, as an eigenvalue approximation. Compute the 2 -norm of the residual of (μ, \mathbf{p}). (10pt) The residual is $\mathbf{r}=\mathbf{A p}-\mu \mathbf{p}$

$$
\begin{aligned}
& \mathbf{r}=\left(\begin{array}{cccc}
4 & 9 & 1 & 3 \\
0 & 8 & 0 & 5 \\
0 & 0 & 7 & 2 \\
0 & 6 & 0 & 10
\end{array}\right)\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5 \\
0.5
\end{array}\right)-55 / 4\left(\begin{array}{c}
0.5 \\
0.5 \\
0.5 \\
0.5
\end{array}\right) \\
&=\left(\begin{array}{c}
17 / 2 \\
13 / 2 \\
9 / 2 \\
8
\end{array}\right)-\left(\begin{array}{c}
55 / 8 \\
55 / 8 \\
55 / 8 \\
55 / 8
\end{array}\right)=\left(\begin{array}{c}
13 / 8 \\
-3 / 8 \\
-19 / 8 \\
9 / 8
\end{array}\right) \\
&\|\mathbf{r}\|_{2}=\sqrt{13^{2}+3^{2}+19^{2}+9^{2}} / 8=\sqrt{620} / 8
\end{aligned}
$$

2. Suppose all the eigenvalues of \mathbf{A} are positive, and the largest one is 0.8 . The convergent rate of the power method, applying to \mathbf{A}, is 0.75 . What is the convergent rate of the shift-invert power method with shift=1? (10pt).

The second largest eigenvalue is $0.8^{*} 0.75=0.6$.
In the shift-invert power method, the convergent rate is

$$
\frac{|1-0.8|}{|1-0.6|}=0.5
$$

3. Apply one iteration of the QR method with shift $\mathbf{1}$ to $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \cdot(20 \mathrm{pt})$ step 1. QR decompose $\mathbf{A}-\sigma \mathbf{I}=\mathbf{Q R}$ (10pt)

$$
\begin{aligned}
\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

step 2. Assemble $\mathbf{R Q}+\sigma \mathbf{I}$ (10pt)

$$
\begin{aligned}
\left(\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

