CS3331 Numerical Methods

Quiz 4, makeup exam

Name: \qquad ID: \qquad

1. Prove a projection matrix $\mathbf{P}=\mathbf{I}-\mathbf{v v}^{T}$ is idempotent $(\mathbf{P P}=\mathbf{P})$ (10pt).

$$
\begin{aligned}
\mathbf{P P} & =\left(\mathbf{I}-\mathbf{v} \mathbf{v}^{T}\right)\left(\mathbf{I}-\mathbf{v} \mathbf{v}^{T}\right) \\
& =\mathbf{I}-\mathbf{v} \mathbf{v}^{T}-\mathbf{v v}^{T}+\mathbf{v v}^{T} \mathbf{v v}^{T} \\
& =\mathbf{I}-2 \mathbf{v} \mathbf{v}^{T}+\mathbf{v}\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{v}^{T} \\
& =\mathbf{I}-\mathbf{v} \mathbf{v}^{T}=\mathbf{P}
\end{aligned}
$$

2. Use Given's rotation to find an orthogonal matrix \mathbf{Q} such that

$$
\begin{aligned}
& \mathbf{Q}\left(\begin{array}{c}
12 \\
4 \\
3
\end{array}\right)=\left(\begin{array}{c}
13 \\
0 \\
0
\end{array}\right) \cdot(20 \mathrm{pt}) \\
& \mathbf{G}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 / 5 & 3 / 5 \\
0 & -3 / 5 & 4 / 5
\end{array}\right), \mathbf{G}_{1}\left(\begin{array}{c}
12 \\
4 \\
3
\end{array}\right)=\left(\begin{array}{c}
12 \\
5 \\
0
\end{array}\right) \\
& \mathbf{G}_{2}=\left(\begin{array}{ccc}
12 / 13 & 5 / 13 & 0 \\
-5 / 13 & 12 / 13 & 0 \\
0 & 0 & 1
\end{array}\right), \mathbf{G}_{2}\left(\begin{array}{c}
12 \\
5 \\
0
\end{array}\right)=\left(\begin{array}{c}
13 \\
0 \\
0
\end{array}\right) \\
& \mathbf{Q}=\mathbf{G}_{2} \mathbf{G}_{1}=\left(\begin{array}{ccc}
12 / 13 & 5 / 13 & 0 \\
-5 / 13 & 12 / 13 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 / 5 & 3 / 5 \\
0 & -3 / 5 & 4 / 5
\end{array}\right)=\left(\begin{array}{ccc}
12 / 13 & 4 / 13 & 3 / 13 \\
-5 / 13 & 48 / 65 & 36 / 65 \\
0 & -3 / 5 & 4 / 5
\end{array}\right)
\end{aligned}
$$

3. Compute the QR decomposition of $\mathbf{A}=\left(\begin{array}{rrr}1 & 5 & -5 \\ 2 & 0 & 5 \\ 2 & 10 & 10 \\ 4 & 0 & 0\end{array}\right)$. The diagonal part of the R-factor must be positive. (20pt)

$$
\begin{gathered}
\mathbf{Q}=\left(\begin{array}{ccc}
1 / 5 & 2 / 5 & -4 / 5 \\
2 / 5 & -1 / 5 & 2 / 5 \\
2 / 5 & 4 / 5 & 2 / 5 \\
4 / 5 & -2 / 5 & -1 / 5
\end{array}\right) \\
\mathbf{R}=\left(\begin{array}{ccc}
5 & 5 & 5 \\
& 10 & 5 \\
& & 10
\end{array}\right)
\end{gathered}
$$

