CS3331 Numerical Methods

Quiz 4, Nov 14th

Name: \qquad ID: \qquad

1. Prove a Householder matrix $\mathbf{H}=\mathbf{I}-2 \mathbf{v v}^{T}$ is orthogonal (10pt).
(No partial credit will be given to any incomplete proof. If you leave it blank or write "Give up", you can get $\mathbf{3}$ point.)

$$
\begin{aligned}
\mathbf{H}^{T} \mathbf{H} & =\left(\mathbf{I}-2 \mathbf{v} \mathbf{v}^{T}\right)\left(\mathbf{I}-2 \mathbf{v} \mathbf{v}^{T}\right) \\
& =\mathbf{I}-2 \mathbf{v} \mathbf{v}^{T}-2 \mathbf{v} \mathbf{v}^{T}+4 \mathbf{\mathbf { v v } ^ { T }} \mathbf{v}^{T} \\
& =\mathbf{I}-4 \mathbf{v} \mathbf{v}^{T}+4 \mathbf{v}\left(\mathbf{v}^{T} \mathbf{v}\right) \mathbf{v}^{T} \\
& =\mathbf{I}-4 \mathbf{v} \mathbf{v}^{T}+4 \mathbf{v} \mathbf{v}^{T}=\mathbf{I}
\end{aligned}
$$

$\mathbf{H}^{T}=\mathbf{H}^{-1}$, so \mathbf{H} is orthogonal.
2. What is the orthogonal projection matrix \mathbf{A} that projects vectors to the null space of $\mathbf{x}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$. 20 pt)
Let $\mathbf{v}=\mathbf{x} /\|\mathbf{x}\|=\left(\begin{array}{c}2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right)$.
The matrix projects vectors to the null space of \mathbf{x} is

$$
\mathbf{A}=\mathbf{I}-\mathbf{v v}^{T}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{ccc}
4 / 9 & 2 / 9 & 4 / 9 \\
2 / 9 & 1 / 9 & 2 / 9 \\
4 / 9 & 2 / 9 & 4 / 9
\end{array}\right)=\left(\begin{array}{ccc}
5 / 9 & -2 / 9 & -4 / 9 \\
-2 / 9 & 8 / 9 & -2 / 9 \\
-4 / 9 & -2 / 9 & 5 / 9
\end{array}\right)
$$

3. Compute the QR decomposition of $\mathbf{A}=\left(\begin{array}{cccc}4 & 9 & 1 & 3 \\ 0 & 8 & 0 & 5 \\ 0 & 0 & 7 & 2 \\ 0 & 6 & 0 & 10\end{array}\right)$. Make sure that all the diagonal elements of the R -factor are nonnegative. (20pt) You can use any methods to compute the QR decomposition, as long as the answer is correct. The simplest way is using Givens rotation.

$$
\begin{aligned}
\mathbf{Q} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0.8 & 0 & -0.6 \\
0 & 0 & 1 & 0 \\
0 & +0.6 & 0 & 0.8
\end{array}\right) \\
\mathbf{R} & =\left(\begin{array}{cccc}
4 & 9 & 1 & 3 \\
0 & 10 & 0 & 10 \\
0 & 0 & 7 & 2 \\
0 & 0 & 0 & 5
\end{array}\right)
\end{aligned}
$$

