CS3331 Numerical Methods

Quiz 10, Jan 13

Name: \qquad , ID: \qquad

1. Suppose $f(1)=1, f(2)=5, f(3)=-3$.
(a) Use central difference to estimate $f^{\prime}(2)$ (10pt)

$$
f^{\prime}(2) \approx \frac{f(3)-f(1)}{3-1}=-2
$$

(b) Use three point method to estimate $f^{\prime \prime}(2)(10 \mathrm{pt})$

$$
f^{\prime \prime}(2) \approx \frac{f(3)-2 f(2)+f(1)}{(2-1)^{2}}=-12
$$

(c) Use composite trapezoid rule (2 panels) to estimate $\int_{1}^{3} f(x) d x$ (10pt)

$$
\int_{1}^{3} f(x) d x \approx \frac{1}{2}[f(3)+2 f(2)+f(1)]=4
$$

(d) Use Simpson's rule to estimate $\int_{1}^{3} f(x) d x$ (10pt)

$$
\int_{1}^{3} f(x) d x \approx \frac{3-1}{6}[f(3)+4 f(2)+f(1)]=6
$$

2. Find w_{1}, w_{2}, w_{3} and $x_{1}, 0<x_{1}<1$, such that

$$
w_{1} f(0)+w_{2} f\left(x_{1}\right)+w_{3} f(1)
$$

computes exactly $\int_{0}^{1} f(x) d x$ for polynomial $f(x)$ of degree ≤ 3. (10pt)

$$
\begin{align*}
\int_{0}^{1} 1 d x & =\left.x\right|_{0} ^{1}=1=w_{1}+w_{2}+w_{3} \tag{1}\\
\int_{0}^{1} x d x & =\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=1 / 2=x_{1} w_{2}+w_{3} \tag{2}\\
\int_{0}^{1} x^{2} d x & =\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=1 / 3=x_{1}^{2} w_{2}+w_{3} \tag{3}\\
\int_{0}^{1} x^{3} d x & =\left.\frac{1}{4} x^{4}\right|_{0} ^{1}=1 / 4=x_{1}^{3} w_{2}+w_{3} \tag{4}
\end{align*}
$$

(2) $-(3) \Rightarrow x_{1} w_{2}-x_{1}^{2} w_{2}=1 / 6$
(3) $-(4) \Rightarrow x_{1}^{2} w_{2}-x_{1}^{3} w_{2}=1 / 12$

$$
x_{1} w_{2}-x_{1}^{2} w_{2}=2\left(x_{1}^{2} w_{2}-x_{1}^{3} w_{2}\right)
$$

Since $x_{1} \neq 0, w_{2}\left(2 x_{1}^{2}-3 x_{1}+1\right)=0 . x_{1}=1 / 2$
(Another solution $x_{1}=1$ does not satisfy the requirement.)
Substitute x_{1} back to get $w_{2}=2 / 3, w_{3}=1 / 6$, and $w_{1}=1 / 6$.
You can see this exactly equals to the Simpson's rule,

$$
\frac{1}{6}(f(0)+4 f(.5)+f(1))
$$

which explains why the Simpson's rule can have $O\left(h^{5}\right)$ error.

