CS 3331 Numerical Methods Lecture 5: Eigenvalue Problem

Cherung Lee

Outline

- Linear algebra.
- Upper triangular matrix
- The power method.
 - Speedup methods
- The orthogonal iteration.
- The QR method.
- Singular value decomposition

Linear Algebra

Definition

- For a given $n \times n$ matrix A, if a scalar λ and a nonzero vector x satisfies $Ax = \lambda x$, we say (λ, x) is an eigenpair of A.
- If there are *n* linearly independent eigenvectors $x_1, x_2, ..., x_n$, then A has the eigen-decomposition:

$$\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$$

where
$$\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \mathbf{x}_n]$$
 and $\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$

Gerschgorin circle theorem LVF pp.12

• For a given $n \times n$ matrix A, define

$$r_i = \sum_{j=1, j \neq i}^n |a_{ij}|.$$

Then each eigenvalue of A is in at least one of the disk $\{z : |z - a_{ii}| < r_i\}.$

• If there is a union of k disks, disjoint from the other disks, then exact k eigenvalues lie within the union.

Residual and Rayleigh quotient LVF pp.194

• Let (μ, \mathbf{z}) be an approximation to an eigenpair of A. Its residual is

$$\mathbf{r} = \mathbf{A}\mathbf{z} - \mu\mathbf{z}.$$

- Small residual implies small backward error.

 \bullet If z is an approximation to an eigenvector of A, then the Rayleigh quotient

$$\mu = \frac{\mathbf{z}^T \mathbf{A} \mathbf{z}}{\mathbf{z}^T \mathbf{z}}$$

is an approximation to the corresponding eigenvalue.

– Rayleigh quotient is the one minimizing $\|\mathbf{r}\|.$

Upper Triangular Matrix

Eigenvalues and characteristic polynomial

- The function $p(x) = \det(\mathbf{A} x\mathbf{I})$ is called the characteristic polynomial of \mathbf{A} .
- The roots of p(x) = 0 are eigenvalues of A.
- If A is triangular, $det(A) = \prod_{i=1}^{n} a_{ii}$.
 - The characteristic function of a triangular matrix is

$$f(x) = \det(\mathbf{A} - x\mathbf{I}) = \prod_{i=1}^{n} (a_{ii} - x)$$

- The eigenvalues of A are the diagonal elements, $a_{11}, a_{22}, \ldots, a_{nn}$.

Eigenvectors of upper triangular matrices

ullet If ${\bf A}$ is upper triangular, the $k{\sf th}$ eigenvector has the form

$$\mathbf{x}_k = \left(\begin{array}{c} \mathbf{z}_1 \\ 1 \\ 0 \end{array} \right) \begin{array}{c} \text{length } k-1 \\ \text{length } 1 \\ \text{length } n-k \end{array}$$

• Decompose A as $\begin{pmatrix} A_1 & a_{:,k} & A_2 \\ & a_{kk} & a_{k,:} \\ & & A_3 \end{pmatrix}$. Using the equation $Ax_k = \lambda_k x_k$ one can obtain

$$\mathbf{A}_1 \mathbf{z}_1 + \mathbf{a}_{:,k} = \lambda_k \mathbf{z}_1$$

Suppose λ_k is not an eigenvalue of A_1 . z_1 can be obtained by solving $(A_1 - \lambda_k I)z_1 = -a_{:,k}$

Power Method

Power method LVF pp.190-193

- Algorithm
 - 1. Given an initial vector $\mathbf{p}_0, \, \|\mathbf{p}_0\| = 1.$
 - 2. For $i = 1, 2, \ldots$ until converged
 - (a) $\mathbf{p}_i = \mathbf{A}\mathbf{p}_{i-1}$
 - (b) $\mathbf{p}_i = \mathbf{p}_i / \|\mathbf{p}_i\|$ //normalization

Why it works?

• Suppose A has eigendecomposition $A = X\Lambda X^{-1}$.

$$-\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \mathbf{x}_n].$$

- Suppose $1 = \lambda_1 > \lambda_2 > \cdots > \lambda_n > 0$
- Initial vector $\mathbf{p}_0 = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \cdots + a_n \mathbf{x}_n$.

$$-\mathbf{p}_1 = \mathbf{A}\mathbf{p}_0 = a_1\lambda_1\mathbf{x}_1 + a_2\lambda_2\mathbf{x}_2 + \cdots + a_n\lambda_n\mathbf{x}_n$$

• Without normalization,

$$\mathbf{p}_{k} = \mathbf{A}\mathbf{p}_{k-1} = \mathbf{A}^{2}\mathbf{p}_{k-2} = \dots = \mathbf{A}^{k}\mathbf{p}_{0}$$
$$= a_{1}\lambda_{1}^{k}\mathbf{x}_{1} + a_{2}\lambda_{2}^{k}\mathbf{x}_{2} + \dots + a_{n}\lambda_{n}^{k}\mathbf{x}_{n}$$
$$\rightarrow a_{1}\mathbf{x}_{1}$$

11

Convergence LVF pp.201

• Eigenvector: linear convergence with rate $|\lambda_2/\lambda_1|$.

- Let
$$\mathbf{z}_k = \frac{1}{a_1 \lambda_1^k} \mathbf{p}_k$$
. Then
 $\mathbf{z}_k - x_1 = \sum_{i=2}^n \frac{a_i}{a_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k x_i \longrightarrow \frac{a_2}{a_1} \left(\frac{\lambda_2}{\lambda_1}\right)^k x_2.$

• Eigenvalue: linear convergence with better convergence rate

– Convergent rate is $|\lambda_2/\lambda_1|^2$ for symmetric matrices.

Speedup by shift LVF pp.196

- Matrix $\mathbf{B} = \mathbf{A} b\mathbf{I}$ has the same eigenvectors as \mathbf{A} .
- Eigenvalues of **B** are $\lambda_1 b, \lambda_2 b, \dots, \lambda_n b$.
- Suppose $|\lambda_1 b|$ is still the largest number among $|\lambda_i b|$
 - The convergent rate becomes $\rho = \max\left\{\frac{|\lambda_2 b|}{|\lambda_1 b|}, \frac{|\lambda_n b|}{|\lambda_1 b|}\right\}.$
 - The b that minimizes ρ is $b^* = (\lambda_2 + \lambda_n)/2$.

Speedup by shift-invert LVF pp.198-200

- Matrix $B = A^{-1}$ has the same eigenvectors as A.
- Eigenvalues of B are $1/\lambda_1, 1/\lambda_2, \cdots 1/\lambda_n$.
 - The smallest eigenvalue becomes the largest one.
 - The convergent rate is $|\lambda_n/\lambda_{n-1}|$.
- Combining shift: $\mathbf{B} = (\mathbf{A} b\mathbf{I})^{-1}$
 - ${\bf B}$ has the same eigenvectors as ${\bf A}.$
 - Eigenvalues of B are $1/(\lambda_1 b), 1/(\lambda_2 b), \cdots 1/(\lambda_n b)$.

- If $|\lambda_1 - b| < |\lambda_2 - b| \cdots < |\lambda_n - b|$, convergence rate is $\frac{|\lambda_1 - b|}{|\lambda_2 - b|}$.

Orthogonal Iteration

Orthogonal iteration JWD 156-159

- Can we compute more than one eigenvectors simultaneously?
- Problem: what is the normalization step?
- Algorithm for two eigenvectors
 - 1. Let $\mathbf{Z}_{(0)}$ be an $n \times 2$ orthogonal matrix.
 - 2. For $i = 1, 2, \ldots$ until converged
 - (a) $Y_{(i)} = AZ_{(i-1)}$.
 - (b) Compute the QR decomposition of $\mathbf{Y}_{(i)}$,

$$\mathbf{Y}_{(i)} = \mathbf{Z}_{(i)} \mathbf{R}_{(i)}.$$

Why it works?

• span
$$\{\mathbf{Z}_{(i)}\}$$
 = span $\{\mathbf{Y}_{(i)}\}$ = span $\{\mathbf{A}\mathbf{Z}_{(i-1)}\}$ = \cdots = span $\{\mathbf{A}^{i}\mathbf{Z}_{(0)}\}$.

• Let $\mathbf{Z}_{(0)} = [\mathbf{q}_1, \mathbf{q}_2].$ Without orthogonalization, both $A^i \mathbf{q}_1, A^i \mathbf{q}_2$ converge to $\mathbf{x}_1.$

$$\begin{cases} \mathbf{A}^{i}\mathbf{q}_{1} = \alpha_{1}\mathbf{x}_{1} + \alpha_{2}\mathbf{x}_{2} + \dots + \alpha_{n}\mathbf{x}_{n}, & |\alpha_{1}| > |\alpha_{2}| > \dots > |\alpha_{n}|; \\ \mathbf{A}^{i}\mathbf{q}_{2} = \beta_{1}\mathbf{x}_{1} + \beta_{2}\mathbf{x}_{2} + \dots + \beta_{n}\mathbf{x}_{n}, & |\beta_{1}| > |\beta_{2}| > \dots > |\beta_{n}|. \end{cases}$$

- However, with orthogonalization, $\mathbf{A}^i\mathbf{q}_2$ can get rid off the influence from $\mathbf{x}_1.$
- Together, span $\{q_1,q_2\}$ converges to span $\{x_1,x_2\}.$

Where are eigenvalues and eigenvectors?

- In the power method, \mathbf{p}_i converges to an eigenvector, and the Rayleigh quotient $\mathbf{p}_i^T \mathbf{A} \mathbf{p}_i / \mathbf{p}_i^T \mathbf{p}_i$ converges to the corresponding eigenvalue.
- When the orthogonal iteration is converging, $\mathbf{Z}_{(i)}\approx\mathbf{Z}_{(i-1)}.$ The generalized Rayleigh quotient

$$\mathbf{Z}_{(i-1)}^T \mathbf{A} \mathbf{Z}_{(i-1)} \approx \mathbf{Z}_{(i)}^T \mathbf{Y}_{(i)} = \mathbf{R}_{(i)}$$

converges to an upper triangular matrix $\mathbf{R}_{(i)}$

- Eigenvalues approximations are on the diagonal of $R_{(i)}$.
- Eigenvector approximations can be solved by inverse power method.(LVF pp.206) or the methods for triangular matrices. (slide 8).

QR Method

QR method LVF pp.202-203

- How about computing all the eigenpairs?
- Algorithm
 - 1. Let $A_{(0)} = A$.
 - 2. For $i = 1, 2, \ldots$ until converged

(a) Compute the QR decomposition of $A_{(i-1)}$,

$$\mathbf{A}_{(i-1)} = \mathbf{Q}_{(i)} \mathbf{R}_{(i)}.$$

(b) Compute $A_{(i)} = R_{(i)}Q_{(i)}$

Why it works?

$$\begin{split} \mathbf{A}_{(i)} &= \mathbf{R}_{(i)} \mathbf{Q}_{(i)} = \mathbf{Q}_{(i)}^T \mathbf{A}_{(i-1)} \mathbf{Q}_{(i)} \\ &= \mathbf{Q}_{(i)}^T \mathbf{R}_{(i-1)} \mathbf{Q}_{(i-1)} \mathbf{Q}_{(i)} \\ &= \mathbf{Q}_{(i)}^T \mathbf{Q}_{(i-1)}^T \mathbf{A}_{(i-2)} \mathbf{Q}_{(i-1)} \mathbf{Q}_{(i)} \\ &= \cdots \\ &= \mathbf{Q}_{(i)}^T \cdots \mathbf{Q}_{(1)}^T \mathbf{A} \mathbf{Q}_{(1)} \cdots \mathbf{Q}_{(i)} \end{split}$$

• If
$$Z_{(0)} = I$$
, $Z_{(i)} = Q_{(1)} \cdots Q_{(i)}$.

- Can be proved by induction. The base case is trivial.
- Orthogonal iteration can be expressed as $AZ_{(i)} = Z_{(i+1)}R_{(i+1)}$. - $A_{(i)} = Z_{(i)}^T AZ_{(i)} = Z_{(i)}^T Z_{(i+1)}R_{(i+1)} = Q_{(i+1)}R_{(i+1)}$ - Since $Z_{(i)}^T Z_{(i+1)} = Q_{(i+1)}$, $Z_{(i+1)} = Z_{(i)}Q_{(i+1)}$.

But why this formulation?

- The QR decomposition costs $O(n^4)$ for *n* eigenpairs.
- An elegant algorithm. (LVF pp.204)
 - 1. Reduce A to upper Hessenberg, $H_{(0)} = WAW^T //O(n^3)$
 - 2. For $i = 1, 2, \ldots$ until converged.
 - (a) QR decomposed $H_{(i-1)} = Q_{(i)}R_{(i)}$ $//O(n^2)$ using Givens rotation (b) $H_{(i)} = R_{(i)}Q_{(i)}$ $//O(n^2)$. $H_{(i)}$ is still upper Hessenberg
- Total time complexity is $O(n^3)$.

- Prove $\mathbf{H}_{(i)} = \mathbf{R}_{(i)}\mathbf{Q}_{(i)} = \mathbf{Q}_{(i)}^T\mathbf{H}_{(i-1)}\mathbf{Q}_{(i)}$ is upper Hessenberg.
 - 1. In 2(a), $H_{(i-1)} = Q_{(i)}R_{(i)}$, matrix $Q_{(i)}$ is upper Hessenberg. (Think about Gram-Schmidt process.)
 - 2. In 2(b), $\mathbf{R}_{(i)}\mathbf{Q}_{(i)}$ generates an upper Hessenberg matrix, since $\mathbf{R}_{(i)}$ is upper triangular.
- Adding shift: ρ_i (LVF pp.207,208)

2(a) QR decomposed
$$\mathbf{H}_{(i-1)} - \rho_i \mathbf{I} = \mathbf{Q}_{(i)} \mathbf{R}_{(i)}$$

2(b) $\mathbf{H}_{(i)} = \mathbf{R}_{(i)} \mathbf{Q}_{(i)} + \rho_i \mathbf{I}$

$$-\mathbf{H}_{(i)} = \mathbf{R}_{(i)}\mathbf{Q}_{(i)} + \rho_{i}\mathbf{I} = \mathbf{Q}_{(i)}^{T}(\mathbf{H}_{(i-1)} - \rho_{i}\mathbf{I})\mathbf{Q}_{(i)} + \rho_{i}\mathbf{I} = \mathbf{Q}_{(i)}^{T}\mathbf{H}_{(i-1)}\mathbf{Q}_{(i)} - \rho_{i}\mathbf{Q}_{(i)}^{T}\mathbf{Q}_{(i)} + \rho_{i}\mathbf{I} = \mathbf{Q}_{(i)}^{T}\mathbf{H}_{(i-1)}\mathbf{Q}_{(i)}.$$

- If $\rho_i = r_{nn}$, the algorithm converges quadratically.

Singular Value Decomposition

Definition

• For an $m \times n$ matrix \mathbf{A} , there always exists an decomposition

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

- Σ is diagonal. The diagonal elements are singular values.
- ${\bf U}$ and ${\bf V}$ are orthogonal.

	Eigenvalue decomp	Singular value decomp
	$\mathrm{A} = \mathrm{X} \Lambda \mathrm{X}^{-1}$	$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
matrix shape	square	any shape
Existence	not always	always
Values	no restricted	always ≥ 0
Relation	The eigenvalue decomposition of $\mathbf{A}^T\mathbf{A}$ is $\mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$;	
	The eigenvalue decomposition of $\mathbf{A}\mathbf{A}^T$ is $\mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$	

Matrix 2-norm

- Recall that $\|\mathbf{A}\|_2 = \max_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2 = \max_{\|\mathbf{x}\|_2=1} \sqrt{\mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}}$
- Use the relation, $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$.

$$\|\mathbf{A}\|_{2} = \max_{\|\mathbf{x}\|_{2}=1} \sqrt{\mathbf{x}^{T} \mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T} \mathbf{x}}.$$

- Matrix $\mathbf{A}^T \mathbf{A}$ is symmetric semipositive definite.
- Suppose the singular values in Σ are sorted in descending order. $V^T x = e_1$ gives the maximum value, which is the largest singular value.
- $V^T x = e_1$ means x is the first column of V, the left singular vector corresponding to the largest singular value.

How to compute SVD? LVF pp.210

- Algorithm
 - 1. Compute the eigenvalue decomposition of $\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$.
 - 2. Compute the QR decomposition of AV = UR.

3. Let
$$\Sigma = \sqrt{\Lambda}$$
.

4.
$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$
 is the SVD of \mathbf{A} .

• A more cheap and numerically stable algorithm is like QR method, but it is rather complicated.