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Outline

• Linear algebra.

• Upper triangular matrix

• The power method.

– Speedup methods

• The orthogonal iteration.

• The QR method.

• Singular value decomposition
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Linear Algebra
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Definition

• For a given n×n matrix A, if a scalar λ and a nonzero vector

x satisfies Ax = λx, we say (λ, x) is an eigenpair of A.

• If there are n linearly independent eigenvectors x1,x2, . . . ,xn,

then A has the eigen-decomposition:

A = XΛX−1

where X = [x1 x2 . . .xn] and Λ =











λ1
λ2

. . .

λn











.
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Gerschgorin circle theorem LVF pp.12

• For a given n × n matrix A, define

ri =
n
∑

j=1,j 6=i

|aij|.

Then each eigenvalue of A is in at least one of the disk

{z : |z − aii| < ri}.

• If there is a union of k disks, disjoint from the other disks,

then exact k eigenvalues lie within the union.
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• Example:

A =







4 1 1
0 2 1

−2 0 9







C1 = {z : |z−4|≤2}, C2 = {z : |z−2|≤1}, C3 = {z : |z−9|≤2}



Residual and Rayleigh quotient LVF pp.194

• Let (µ, z) be an approximation to an eigenpair of A. Its

residual is

r = Az − µz.

– Small residual implies small backward error.

• If z is an approximation to an eigenvector of A, then the

Rayleigh quotient

µ =
zTAz

zTz

is an approximation to the corresponding eigenvalue.

– Rayleigh quotient is the one minimizing ‖r‖.
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Upper Triangular Matrix
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Eigenvalues and characteristic polynomial

• The function p(x) = det(A − xI) is called the characteristic

polynomial of A.

• The roots of p(x) = 0 are eigenvalues of A.

• If A is triangular, det(A) =
∏n

i=1 aii.

– The characteristic function of a triangular matrix is

f(x) = det(A − xI) =
n
∏

i=1

(aii − x)

– The eigenvalues of A are the diagonal elements, a11, a22, . . . , ann.
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Eigenvectors of upper triangular matrices

• If A is upper triangular, the kth eigenvector has the form

xk =







z1
1
0







length k − 1
length 1
length n − k

• Decompose A as







A1 a:,k A2

akk ak,:
A3






. Using the equation Axk =

λkxk one can obtain

A1z1 + a:,k = λkz1

Suppose λk is not an eigenvalue of A1. z1 can be obtained

by solving (A1 − λkI)z1 = −a:,k
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Power Method
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Power method LVF pp.190-193

• Algorithm

1. Given an initial vector p0, ‖p0‖ = 1.

2. For i = 1,2, . . . until converged

(a) pi = Api−1

(b) pi = pi/‖pi‖ //normalization
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Why it works?

• Suppose A has eigendecomposition A = XΛX−1.

– X = [x1 x2 · · ·xn].

– Suppose 1 = λ1 > λ2 > · · · > λn > 0

• Initial vector p0 = a1x1 + a2x2 + · · · anxn.

– p1 = Ap0 = a1λ1x1 + a2λ2x2 + · · · anλnxn

• Without normalization,

pk = Apk−1 = A2pk−2 = · · · = Akp0

= a1λk
1x1 + a2λk

2x2 + · · · anλk
nxn

→ a1x1
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Convergence LVF pp.201

• Eigenvector: linear convergence with rate |λ2/λ1|.

– Let zk = 1
a1λk

1

pk. Then

zk − x1 =
n
∑

i=2

ai

a1

(

λi

λ1

)k

xi −→
a2

a1

(

λ2

λ1

)k

x2.

• Eigenvalue: linear convergence with better convergence rate

– Convergent rate is |λ2/λ1|2 for symmetric matrices.
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Speedup by shift LVF pp.196

• Matrix B = A − bI has the same eigenvectors as A.

• Eigenvalues of B are λ1 − b, λ2 − b, · · ·λn − b.

• Suppose |λ1 − b| is still the largest number among |λi − b|

– The convergent rate becomes ρ = max

{

|λ2 − b|
|λ1 − b|

,
|λn − b|
|λ1 − b|

}

.

– The b that minimizes ρ is b∗ = (λ2 + λn)/2.
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Speedup by shift-invert LVF pp.198-200

• Matrix B = A−1 has the same eigenvectors as A.

• Eigenvalues of B are 1/λ1,1/λ2, · · ·1/λn.

– The smallest eigenvalue becomes the largest one.

– The convergent rate is |λn/λn−1|.

• Combining shift: B = (A − bI)−1

– B has the same eigenvectors as A.

– Eigenvalues of B are 1/(λ1 − b),1/(λ2 − b), · · ·1/(λn − b).

– If |λ1− b| < |λ2− b| · · · < |λn− b|, convergence rate is
|λ1−b|
|λ2−b|.
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Orthogonal Iteration
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Orthogonal iteration JWD 156-159

• Can we compute more than one eigenvectors simultaneously?

• Problem: what is the normalization step?

• Algorithm for two eigenvectors

1. Let Z(0) be an n × 2 orthogonal matrix.

2. For i = 1,2, . . . until converged

(a) Y(i) = AZ(i−1).

(b) Compute the QR decomposition of Y(i),

Y(i) = Z(i)R(i).
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Why it works?

• span
{

Z(i)

}

= span
{

Y(i)

}

= span
{

AZ(i−1)

}

= · · · = span
{

AiZ(0)

}

.

• Let Z(0) = [q1,q2]. Without orthogonalization, both Aiq1,Aiq2

converge to x1.
{

Aiq1 = α1x1 + α2x2 + · · · + αnxn, |α1| > |α2| > · · · > |αn|;
Aiq2 = β1x1 + β2x2 + · · · + βnxn, |β1| > |β2| > · · · > |βn|.

– However, with orthogonalization, Aiq2 can get rid off the

influence from x1.

– Together, span{q1,q2} converges to span{x1,x2}.
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Where are eigenvalues and eigenvectors?

• In the power method, pi converges to an eigenvector, and

the Rayleigh quotient pT
i Api/p

T
i pi converges to the corre-

sponding eigenvalue.

• When the orthogonal iteration is converging, Z(i) ≈ Z(i−1).

The generalized Rayleigh quotient

ZT
(i−1)AZ(i−1) ≈ ZT

(i)Y(i) = R(i)

converges to an upper triangular matrix R(i)

– Eigenvalues approximations are on the diagonal of R(i).

– Eigenvector approximations can be solved by inverse power

method.( LVF pp.206) or the methods for triangular ma-

trices. (slide 8).
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QR Method
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QR method LVF pp.202-203

• How about computing all the eigenpairs?

• Algorithm

1. Let A(0) = A.

2. For i = 1,2, . . . until converged

(a) Compute the QR decomposition of A(i−1),

A(i−1) = Q(i)R(i).

(b) Compute A(i) = R(i)Q(i)
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Why it works?

A(i) = R(i)Q(i) = QT
(i)A(i−1)Q(i)

= QT
(i)R(i−1)Q(i−1)Q(i)

= QT
(i)Q

T
(i−1)A(i−2)Q(i−1)Q(i)

= · · ·
= QT

(i) · · ·Q
T
(1)AQ(1) · · ·Q(i)

• If Z(0) = I, Z(i) = Q(1) · · ·Q(i).

– Can be proved by induction. The base case is trivial.

– Orthogonal iteration can be expressed as AZ(i) = Z(i+1)R(i+1).

– A(i) = ZT
(i)

AZ(i) = ZT
(i)

Z(i+1)R(i+1) = Q(i+1)R(i+1)

– Since ZT
(i)

Z(i+1) = Q(i+1), Z(i+1) = Z(i)Q(i+1).
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But why this formulation?

• The QR decomposition costs O(n4) for n eigenpairs.

• An elegant algorithm. (LVF pp.204)

1. Reduce A to upper Hessenberg, H(0) = WAWT //O(n3)

2. For i = 1,2, . . . until converged.

(a) QR decomposed H(i−1) = Q(i)R(i)

//O(n2) using Givens rotation

(b) H(i) = R(i)Q(i)

//O(n2). H(i) is still upper Hessenberg

• Total time complexity is O(n3).
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• Prove H(i) = R(i)Q(i) = QT
(i)

H(i−1)Q(i) is upper Hessenberg.

1. In 2(a), H(i−1) = Q(i)R(i), matrix Q(i) is upper Hessen-

berg. (Think about Gram-Schmidt process.)

2. In 2(b), R(i)Q(i) generates an upper Hessenberg matrix,

since R(i) is upper triangular.

• Adding shift: ρi (LVF pp.207,208)

2(a) QR decomposed H(i−1) − ρiI = Q(i)R(i)
2(b) H(i) = R(i)Q(i) + ρiI

– H(i) = R(i)Q(i) + ρiI = QT
(i)

(H(i−1) − ρiI)Q(i) + ρiI =

QT
(i)

H(i−1)Q(i) − ρiQ
T
(i)

Q(i) + ρiI = QT
(i)

H(i−1)Q(i).

– If ρi = rnn, the algorithm converges quadratically.



Singular Value Decomposition
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Definition

• For an m×n matrix A, there always exists an decomposition

A = UΣVT

– Σ is diagonal. The diagonal elements are singular values.

– U and V are orthogonal.

Eigenvalue decomp Singular value decomp

A = XΛX−1 A = UΣVT

matrix shape square any shape
Existence not always always
Values no restricted always ≥ 0

Relation The eigenvalue decomposition of ATA is VΣ2VT ;

The eigenvalue decomposition of AAT is UΣ2UT
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Matrix 2-norm

• Recall that ‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

√

xTATAx

• Use the relation, ATA = VΣ2VT .

‖A‖2 = max
‖x‖2=1

√

xTVΣ2VTx.

– Matrix ATA is symmetric semipositive definite.

– Suppose the singular values in Σ are sorted in descending

order. VTx = e1 gives the maximum value, which is the

largest singular value.

– VTx = e1 means x is the first column of V, the left sin-

gular vector corresponding to the largest singular value.
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How to compute SVD? LVF pp.210

• Algorithm

1. Compute the eigenvalue decomposition of ATA = VΛV−1.

2. Compute the QR decomposition of AV = UR.

3. Let Σ =
√

Λ.

4. A = UΣVT is the SVD of A.

• A more cheap and numerically stable algorithm is like QR

method, but it is rather complicated.
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