CS 3331 Numerical Methods
 Lecture 5: Eigenvalue Problem

Cherung Lee

Outline

- Linear algebra.
- Upper triangular matrix
- The power method.
- Speedup methods
- The orthogonal iteration.
- The QR method.
- Singular value decomposition

Linear Algebra

Definition

- For a given $n \times n$ matrix \mathbf{A}, if a scalar λ and a nonzero vector \mathbf{x} satisfies $\mathbf{A x}=\lambda \mathbf{x}$, we say (λ, \mathbf{x}) is an eigenpair of \mathbf{A}.
- If there are n linearly independent eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$, then \mathbf{A} has the eigen-decomposition:

$$
\mathrm{A}=\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1}
$$

where $\mathbf{X}=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots \mathrm{x}_{n}\end{array}\right]$ and $\Lambda=\left(\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right)$.

Gerschgorin circle theorem LVF pp. 12

- For a given $n \times n$ matrix \mathbf{A}, define

$$
r_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right| .
$$

Then each eigenvalue of \mathbf{A} is in at least one of the disk $\left\{z:\left|z-a_{i i}\right|<r_{i}\right\}$.

- If there is a union of k disks, disjoint from the other disks, then exact k eigenvalues lie within the union.
- Example:

Residual and Rayleigh quotient LVF pp. 194

- Let (μ, \mathbf{z}) be an approximation to an eigenpair of \mathbf{A}. Its residual is

$$
\mathrm{r}=\mathbf{A z}-\mu \mathrm{z}
$$

- Small residual implies small backward error.
- If \mathbf{z} is an approximation to an eigenvector of \mathbf{A}, then the Rayleigh quotient

$$
\mu=\frac{\mathbf{z}^{T} \mathbf{A} \mathbf{z}}{\mathbf{z}^{T} \mathbf{z}}
$$

is an approximation to the corresponding eigenvalue.

- Rayleigh quotient is the one minimizing $\|\mathbf{r}\|$.

Upper Triangular Matrix

Eigenvalues and characteristic polynomial

- The function $p(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})$ is called the characteristic polynomial of \mathbf{A}.
- The roots of $p(x)=0$ are eigenvalues of \mathbf{A}.
- If \mathbf{A} is triangular, $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} a_{i i}$.
- The characteristic function of a triangular matrix is

$$
f(x)=\operatorname{det}(\mathbf{A}-x \mathbf{I})=\prod_{i=1}^{n}\left(a_{i i}-x\right)
$$

- The eigenvalues of \mathbf{A} are the diagonal elements, $a_{11}, a_{22}, \ldots, a_{n n}$.

Eigenvectors of upper triangular matrices

- If \mathbf{A} is upper triangular, the k th eigenvector has the form

$$
\mathbf{x}_{k}=\left(\begin{array}{c}
\mathbf{z}_{1} \\
1 \\
0
\end{array}\right) \begin{aligned}
& \text { length } k-1 \\
& \text { length } 1 \\
& \text { length } n-k
\end{aligned}
$$

- Decompose \mathbf{A} as $\left(\begin{array}{ccc}\mathbf{A}_{1} & \mathbf{a}_{:, k} & \mathbf{A}_{2} \\ & a_{k k} & \mathbf{a}_{k,:} \\ & & \mathbf{A}_{3}\end{array}\right)$. Using the equation $\mathbf{A x}_{k}=$ $\lambda_{k} \mathbf{x}_{k}$ one can obtain

$$
\mathbf{A}_{1} \mathbf{z}_{1}+\mathbf{a}_{:, k}=\lambda_{k} \mathbf{z}_{1}
$$

Suppose λ_{k} is not an eigenvalue of $\mathbf{A}_{1} . \mathbf{z}_{1}$ can be obtained by solving $\left(\mathbf{A}_{1}-\lambda_{k} \mathbf{I}\right) \mathbf{z}_{1}=-\mathbf{a}_{:, k}$

Power Method

Power method LVF pp.190-193

- Algorithm

1. Given an initial vector $\mathbf{p}_{0},\left\|\mathbf{p}_{0}\right\|=1$.
2. For $i=1,2, \ldots$ until converged
(a) $\mathbf{p}_{i}=\mathbf{A} \mathbf{p}_{i-1}$
(b) $\mathbf{p}_{i}=\mathbf{p}_{i} /\left\|\mathbf{p}_{i}\right\| \quad / /$ normalization

Why it works?

- Suppose \mathbf{A} has eigendecomposition $\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$.
$-\mathrm{X}=\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{n}\end{array}\right]$.
- Suppose $1=\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0$
- Initial vector $\mathbf{p}_{0}=a_{1} \mathbf{x}_{1}+a_{2} \mathrm{x}_{2}+\cdots a_{n} \mathrm{x}_{n}$.

$$
-\mathbf{p}_{1}=\mathbf{A} \mathbf{p}_{0}=a_{1} \lambda_{1} \mathbf{x}_{1}+a_{2} \lambda_{2} \mathbf{x}_{2}+\cdots a_{n} \lambda_{n} \mathbf{x}_{n}
$$

- Without normalization,

$$
\begin{aligned}
\mathbf{p}_{k} & =\mathbf{A p}_{k-1}=\mathbf{A}^{2} \mathbf{p}_{k-2}=\cdots=\mathbf{A}^{k} \mathbf{p}_{0} \\
& =a_{1} \lambda_{1}^{k} \mathbf{x}_{1}+a_{2} \lambda_{2}^{k} \mathbf{x}_{2}+\cdots a_{n} \lambda_{n}^{k} \mathbf{x}_{n} \\
& \rightarrow a_{1} \mathbf{x}_{1}
\end{aligned}
$$

Convergence LVF pp. 201

- Eigenvector: linear convergence with rate $\left|\lambda_{2} / \lambda_{1}\right|$.
- Let $\mathbf{z}_{k}=\frac{1}{a_{1} \lambda_{1}^{k}} \mathbf{p}_{k}$. Then

$$
\mathrm{z}_{k}-x_{1}=\sum_{i=2}^{n} \frac{a_{i}}{a_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} x_{i} \longrightarrow \frac{a_{2}}{a_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} x_{2}
$$

- Eigenvalue: linear convergence with better convergence rate
- Convergent rate is $\left|\lambda_{2} / \lambda_{1}\right|^{2}$ for symmetric matrices.

Speedup by shift LVF pp. 196

- Matrix $\mathbf{B}=\mathbf{A}-b \mathbf{I}$ has the same eigenvectors as \mathbf{A}.
- Eigenvalues of B are $\lambda_{1}-b, \lambda_{2}-b, \cdots \lambda_{n}-b$.
- Suppose $\left|\lambda_{1}-b\right|$ is still the largest number among $\left|\lambda_{i}-b\right|$
- The convergent rate becomes $\rho=\max \left\{\frac{\left|\lambda_{2}-b\right|}{\left|\lambda_{1}-b\right|}, \frac{\left|\lambda_{n}-b\right|}{\left|\lambda_{1}-b\right|}\right\}$.
- The b that minimizes ρ is $b^{*}=\left(\lambda_{2}+\lambda_{n}\right) / 2$.

Speedup by shift-invert LVF pp.198-200

- Matrix $\mathbf{B}=\mathbf{A}^{-1}$ has the same eigenvectors as \mathbf{A}.
- Eigenvalues of B are $1 / \lambda_{1}, 1 / \lambda_{2}, \cdots 1 / \lambda_{n}$.
- The smallest eigenvalue becomes the largest one.
- The convergent rate is $\left|\lambda_{n} / \lambda_{n-1}\right|$.
- Combining shift: $\mathbf{B}=(\mathbf{A}-b \mathbf{I})^{-1}$
- B has the same eigenvectors as A.
- Eigenvalues of \mathbf{B} are $1 /\left(\lambda_{1}-b\right), 1 /\left(\lambda_{2}-b\right), \cdots 1 /\left(\lambda_{n}-b\right)$.
- If $\left|\lambda_{1}-b\right|<\left|\lambda_{2}-b\right| \cdots<\left|\lambda_{n}-b\right|$, convergence rate is $\frac{\left|\lambda_{1}-b\right|}{\left|\lambda_{2}-b\right|}$.

Orthogonal Iteration

Orthogonal iteration JWD 156-159

- Can we compute more than one eigenvectors simultaneously?
- Problem: what is the normalization step?
- Algorithm for two eigenvectors

1. Let $Z_{(0)}$ be an $n \times 2$ orthogonal matrix.
2. For $i=1,2, \ldots$ until converged
(a) $\mathbf{Y}_{(i)}=\mathbf{A Z}_{(i-1)}$.
(b) Compute the QR decomposition of $\mathbf{Y}_{(i)}$,

$$
\mathbf{Y}_{(i)}=\mathbf{Z}_{(i)} \mathbf{R}_{(i)}
$$

Why it works?

- $\operatorname{span}\left\{\mathbf{Z}_{(i)}\right\}=\operatorname{span}\left\{\mathbf{Y}_{(i)}\right\}=\operatorname{span}\left\{\mathbf{A Z}_{(i-1)}\right\}=\cdots=\operatorname{span}\left\{\mathbf{A}^{i} \mathbf{Z}_{(0)}\right\}$.
- Let $\mathbf{Z}_{(0)}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}\right]$. Without orthogonalization, both $\mathbf{A}^{i} \mathbf{q}_{1}, \mathbf{A}^{i} \mathbf{q}_{2}$ converge to x_{1}.
$\begin{cases}\mathbf{A}^{i} \mathbf{q}_{1}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n}, & \left|\alpha_{1}\right|>\left|\alpha_{2}\right|>\cdots>\left|\alpha_{n}\right| ; \\ \mathbf{A}^{i} \mathbf{q}_{2}=\beta_{1} \mathbf{x}_{1}+\beta_{2} \mathbf{x}_{2}+\cdots+\beta_{n} \mathbf{x}_{n}, & \left|\beta_{1}\right|>\left|\beta_{2}\right|>\cdots>\left|\beta_{n}\right| .\end{cases}$
- However, with orthogonalization, $\mathbf{A}^{i} \mathbf{q}_{2}$ can get rid off the influence from x_{1}.
- Together, $\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$ converges to $\operatorname{span}\left\{\mathbf{x}_{1}, \mathrm{x}_{2}\right\}$.

Where are eigenvalues and eigenvectors?

- In the power method, \mathbf{p}_{i} converges to an eigenvector, and the Rayleigh quotient $\mathbf{p}_{i}^{T} \mathbf{A} \mathbf{p}_{i} / \mathbf{p}_{i}^{T} \mathbf{p}_{i}$ converges to the corresponding eigenvalue.
- When the orthogonal iteration is converging, $\mathbf{Z}_{(i)} \approx \mathbf{Z}_{(i-1)}$. The generalized Rayleigh quotient

$$
\mathbf{Z}_{(i-1)}^{T} \mathbf{A Z}_{(i-1)} \approx \mathbf{Z}_{(i)}^{T} \mathbf{Y}_{(i)}=\mathbf{R}_{(i)}
$$

converges to an upper triangular matrix $\mathbf{R}_{(i)}$

- Eigenvalues approximations are on the diagonal of $\mathbf{R}_{(i)}$.
- Eigenvector approximations can be solved by inverse power method. (LVF pp.206) or the methods for triangular matrices. (slide 8).

QR Method

QR method LVF pp.202-203

- How about computing all the eigenpairs?
- Algorithm

1. Let $\mathbf{A}_{(0)}=\mathbf{A}$.
2. For $i=1,2, \ldots$ until converged
(a) Compute the QR decomposition of $\mathbf{A}_{(i-1)}$,

$$
\mathbf{A}_{(i-1)}=\mathbf{Q}_{(i)} \mathbf{R}_{(i)}
$$

(b) Compute $\mathbf{A}_{(i)}=\mathbf{R}_{(i)} \mathbf{Q}_{(i)}$

Why it works?

$$
\begin{aligned}
\mathbf{A}_{(i)} & =\mathbf{R}_{(i)} \mathbf{Q}_{(i)}=\mathbf{Q}_{(i)}^{T} \mathbf{A}_{(i-1)} \mathbf{Q}_{(i)} \\
& =\mathbf{Q}_{(i)}^{T} \mathbf{R}_{(i-1)} \mathbf{Q}_{(i-1)} \mathbf{Q}_{(i)} \\
& =\mathbf{Q}_{(i)}^{T} \mathbf{Q}_{(i-1)}^{T} \mathbf{A}_{(i-2)} \mathbf{Q}_{(i-1)} \mathbf{Q}_{(i)} \\
& =\cdots \\
& =\mathbf{Q}_{(i)}^{T} \cdots \mathbf{Q}_{(1)}^{T} \mathbf{A Q}_{(1)} \cdots \mathbf{Q}_{(i)}
\end{aligned}
$$

- If $\mathrm{Z}_{(0)}=\mathbf{I}, \mathrm{Z}_{(i)}=\mathrm{Q}_{(1)} \cdots \mathbf{Q}_{(i)}$.
- Can be proved by induction. The base case is trivial.
- Orthogonal iteration can be expressed as $\mathbf{A Z}(i)=\mathbf{Z}_{(i+1)} \mathbf{R}_{(i+1)}$.
$-\mathbf{A}_{(i)}=\mathbf{Z}_{(i)}^{T} \mathbf{A} \mathbf{Z}_{(i)}=\mathbf{Z}_{(i)}^{T} \mathbf{Z}_{(i+1)} \mathbf{R}_{(i+1)}=\mathbf{Q}_{(i+1)} \mathbf{R}_{(i+1)}$
- Since $\mathbf{Z}_{(i)}^{T} \mathbf{Z}_{(i+1)}=\mathbf{Q}_{(i+1)}, \mathbf{Z}_{(i+1)}=\mathbf{Z}_{(i)} \mathbf{Q}_{(i+1)}$.

But why this formulation?

- The QR decomposition costs $O\left(n^{4}\right)$ for n eigenpairs.
- An elegant algorithm. (LVF pp.204)

1. Reduce \mathbf{A} to upper Hessenberg, $\mathbf{H}_{(0)}=\mathbf{W A W}^{T} / / O\left(n^{3}\right)$
2. For $i=1,2, \ldots$ until converged.
(a) QR decomposed $\mathbf{H}_{(i-1)}=\mathbf{Q}_{(i)} \mathbf{R}_{(i)}$ //O(n^{2}) using Givens rotation
(b) $\mathbf{H}_{(i)}=\mathbf{R}_{(i)} \mathrm{Q}_{(i)}$
$/ / O\left(n^{2}\right) \cdot \mathrm{H}_{(i)}$ is still upper Hessenberg

- Total time complexity is $O\left(n^{3}\right)$.
- Prove $\mathbf{H}_{(i)}=\mathbf{R}_{(i)} \mathbf{Q}_{(i)}=\mathbf{Q}_{(i)}^{T} \mathbf{H}_{(i-1)} \mathbf{Q}_{(i)}$ is upper Hessenberg.

1. In 2(a), $\mathbf{H}_{(i-1)}=\mathbf{Q}_{(i)} \mathbf{R}_{(i)}$, matrix $\mathbf{Q}_{(i)}$ is upper Hessenberg. (Think about Gram-Schmidt process.)
2. In 2(b), $\mathbf{R}_{(i)} \mathbf{Q}_{(i)}$ generates an upper Hessenberg matrix, since $\mathbf{R}_{(i)}$ is upper triangular.

- Adding shift: ρ_{i} (LVF pp. 207,208)

$$
\begin{gathered}
\text { 2(a) } \quad \mathbf{Q R} \text { decomposed } \mathbf{H}_{(i-1)}-\rho_{i} \mathbf{I}=\mathbf{Q}_{(i)} \mathbf{R}_{(i)} \\
\text { 2(b) } \mathbf{H}_{(i)}=\mathbf{R}_{(i)} \mathbf{Q}_{(i)}+\rho_{i} \mathbf{I} \\
-\mathbf{H}_{(i)}=\mathbf{R}_{(i)} \mathbf{Q}_{(i)}+\rho_{i} \mathbf{I}=\mathbf{Q}_{(i)}^{T}\left(\mathbf{H}_{(i-1)}-\rho_{i} \mathbf{I}\right) \mathbf{Q}_{(i)}+\rho_{i} \mathbf{I}= \\
\mathbf{Q}_{(i)}^{T} \mathbf{H}_{(i-1)} \mathbf{Q}_{(i)}-\rho_{i} \mathbf{Q}_{(i)}^{T} \mathbf{Q}_{(i)}+\rho_{i} \mathbf{I}=\mathbf{Q}_{(i)}^{T} \mathbf{H}_{(i-1)} \mathbf{Q}_{(i)} . \\
\text { - If } \rho_{i}=r_{n n}, \text { the algorithm converges quadratically. }
\end{gathered}
$$

Singular Value Decomposition

Definition

- For an $m \times n$ matrix A, there always exists an decomposition

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

$-\Sigma$ is diagonal. The diagonal elements are singular values.
-U and V are orthogonal.

	Eigenvalue decomp $\mathbf{A}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$	Singular value decomp $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$		
matrix shape Existence Values	square	not always		
no restricted			\quad	any shape
:---:				
always				
Relation		The eigenvalue decomposition of $\mathbf{A}^{T} \mathbf{A}$ is $\mathbf{V} \mathbf{\Sigma}^{2} \mathbf{V}^{T} ;$		
:---				
The eigenvalue decomposition of $\mathbf{A} \mathbf{A}^{T}$ is $\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}$				

Matrix 2-norm

- Recall that $\|\mathbf{A}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|\mathbf{A} \mathbf{x}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1} \sqrt{\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}}$
- Use the relation, $\mathbf{A}^{T} \mathbf{A}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}$.

$$
\|\mathbf{A}\|_{2}=\max _{\|\mathbf{x}\|_{2}=1} \sqrt{\mathbf{x}^{T} \mathbf{V} \Sigma^{2} \mathbf{V}^{T} \mathbf{x}}
$$

- Matrix $\mathbf{A}^{T} \mathbf{A}$ is symmetric semipositive definite.
- Suppose the singular values in Σ are sorted in descending order. $\mathbf{V}^{T} \mathbf{x}=\mathbf{e}_{1}$ gives the maximum value, which is the largest singular value.
$-\mathbf{V}^{T} \mathbf{x}=\mathbf{e}_{1}$ means \mathbf{x} is the first column of \mathbf{V}, the left singular vector corresponding to the largest singular value.

How to compute SVD? LVF pp. 210

- Algorithm

1. Compute the eigenvalue decomposition of $\mathbf{A}^{T} \mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$.
2. Compute the $Q R$ decomposition of $\mathbf{A V}=\mathbf{U R}$.
3. Let $\Sigma=\sqrt{\Lambda}$.
4. $\mathbf{A}=\mathbf{U} \Sigma \mathrm{V}^{T}$ is the SVD of \mathbf{A}.

- A more cheap and numerically stable algorithm is like $Q R$ method, but it is rather complicated.

