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Outline

e Linear algebra.
e Upper triangular matrix

e [ he power method.
— Speedup methods

e [ he orthogonal iteration.
e The QR method.

e Singular value decomposition



Linear Algebra



Definition

e For a given n xn matrix A, if a scalar A and a nonzero vector
x satisfies Ax = Ax, we say (A, x) is an eigenpair of A.

e If there are n linearly independent eigenvectors x1,xo,...,Xn,
then A has the eigen-decomposition:

A = XAX 1
A1

where X = [x1 X5 ...xp] and A = A2



Gerschgorin circle theorem LvF pp.12

e For a given n x n matrix A, define

n

=Y |agl

J=1,571
Then each eigenvalue of A is in at least one of the disk
{z:|z—ay| <r}.

e If there is a union of k disks, disjoint from the other disks,
then exact k eigenvalues lie within the union.



e Example:

Cir=AHz:|2—4|<2}, Cr={z:|z2—2|<1}, C3={2z:|2—9| <2}

A imaginary axis

17 real axis




Residual and Rayleigh quotient LvF pp.194

o Let (u,z) be an approximation to an eigenpair of A. Its
residual is

r = Az — uz.
— Small residual implies small backward error.

e If z is an approximation to an eigenvector of A, then the
Rayleigh quotient
7zl Az
AY;
IS an approximation to the corresponding eigenvalue.

— Rayleigh quotient is the one minimizing ||r||.



Upper Triangular Matrix



Eigenvalues and characteristic polynomial

e The function p(x) = det(A — zI) is called the characteristic
polynomial of A.

e The roots of p(x) = 0 are eigenvalues of A.

o If A is triangular, det(A) = [ ay.

— The characteristic function of a triangular matrix is

n

f(z) = det(A - al) = [[ (ay; — )

1=1

— The eigenvalues of A are the diagonal elements, aq1,aoo, ...



Eigenvectors of upper triangular matrices

e If A is upper triangular, the kth eigenvector has the form

71 length £ —1
X, =1 1 length 1
0 length n — k

Ay a . Ao
e Decompose A as agr g |- Using the equation Ax; =
Az
ALX3. Oone can obtain

A1z +a. ) = ApZ1

Suppose . is not an eigenvalue of Aj. z1 can be obtained
by solving (A1 — A\ D)z1 = —a.



Power Method



Power method LvVvF pp.190-193

e Algorithm
1. Given an initial vector pq, ||[po|| = 1.
2. For + =1,2,... until converged

(a) ps = Ap;_1

(b) p; = pi/lIpill //normalization
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Why it works?

e Suppose A has eigendecomposition A = XAX 1.

— X = [x1 X2 -+ Xp].
— Suppose 1 = A1 > > - > Ay, >0

e Initial vector pg = a1x7 + aoxo + - - - anXn.
— P1 = Apg = a1A1X1 + a2 X + - - - apAnXn

e Without normalization,

Apj_1 = A%pp_p=--- = Apg
— alAlfxl + aQ)\IQCXQ + - CLnAfLXn

Pk

— a1Xj]
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Convergence LVF pp.201

e Eigenvector: linear convergence with rate |[Ay>/\1].

1
a1A§

k k
Lr oy — ii(i) v 2 (/\2> -
— ; ,
=5 a1 \A1 a1 \ A1

e Eigenvalue: linear convergence with better convergence rate

— Let z;, = pPr- T hen

— Convergent rate is |A»/A1|? for symmetric matrices.
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Speedup by shift LvF pp.196
e Matrix B = A — bl has the same eigenvectors as A.
e Eigenvalues of B are A\{ — b, > —b,--- A\, — b.

e Suppose |A1 — b| is still the largest number among |\; — b|

Ao —b| |Ap—0
— T he convergent rate becomes p = max {| 2 | [An l}.

A1 =Bl [A1 — b

— The b that minimizes p is b* = (Ao + A\n)/2.
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Speedup by shift-invert LvF pp.198-200

e Matrix B = A—1 has the same eigenvectors as A.

e Eigenvalues of B are 1/A1,1/Xo,---1/An.

— T he smallest eigenvalue becomes the largest one.

— The convergent rate is |An/A—1].
e Combining shift: B = (A — bI)~1

— B has the same eigenvectors as A.

— Eigenvalues of B are 1/(A\1 —b),1/(A> —b),---1/(A\n — b).

[A1—0]

— If [N\ —b| < |Ap—=b|--- < |\ —b|, cOnvergence rate is pesl
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Orthogonal Iteration
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Orthogonal iteration Jwbp 156-159

e Can we compute more than one eigenvectors simultaneously?
e Problem: what is the normalization step?

e Algorithm for two eigenvectors
1. Let Z(o) be an n x 2 orthogonal matrix.

2. For + =1,2,... until converged

(b) Compute the QR decomposition of Y ;y,
Yo = 2R
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Why it works?

® Span {Z(z)} — Span {Y(z)} — Span {Az(z—l)} = .- = Span {AzZ(O)}

e Let Z(p) = [q1,q92]. Without orthogonalization, both Atqq, Algo
converge to xj.

A'qr = a1X1 +aoXxp 4+ -+ anXn, |ag] > las] > > |anl;
A'qy = B1x1 + Boxo + - - + BnXn, |B1] > 62| > -+ > |Bal.

— However, with orthogonalization, A'q, can get rid off the
influence from xj.

— Together, span{qi,q>} converges to span{xi,xo}.
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Where are eigenvalues and eigenvectors?

e In the power method, p; converges to an eigenvector, and
the Rayleigh quotient p/ Ap;/p!p; converges to the corre-
sponding eigenvalue.

e When the orthogonal iteration is converging, Zgy =~ Z;_1).
The generalized Rayleigh quotient

T ~ 7T __
Z(,_1)yAL 1y~ LinY ) = Ry
converges to an upper triangular matrix R(,L-)

— Eigenvalues approximations are on the diagonal of R(i).

— Eigenvector approximations can be solved by inverse power
method.( LVF pp.206) or the methods for triangular ma-
trices. (slide 8).

18



QR Method
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QR method LvF pp.202-203

e How about computing all the eigenpairs?

e Algorithm
1. Let A(O) = A.

2. For:=1,2,... until converged

(a) Compute the QR decomposition of A(i_l),
Ai-1) = QR

(b) Compute A(z) = R(Z)Q(Z)
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Why it works?
. _ T
Auy = Rup)Qu) = QnAu-1)Qu)
T
QinRi-1)Qu-1)Q)
T T
Qi Qli—1)A-2)Qi-1) Qi)

T T
Qi QyAQ) - Q)

* 120 =1 24 = Q- Quy
— Can be proved by induction. The base case is trivial.
— Orthogonal iteration can be expressed as AZ;y = Z¢; 1 1)R;41)-
— Aw) = ZnAZe) = 23 2+ 1)R(i+1) = Qu+nRG+1)
= Since Z(yZ¢i41) = QGi+1) Zei+1) = L) Qqit+1):
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But why this formulation?

e The QR decomposition costs O(n?) for n eigenpairs.

e An elegant algorithm. (LVF pp.204)

1. Reduce A to upper Hessenberg, H gy = WAW?L //0(n>)

2. For ¢+ =1,2,... until converged.

(a) QR decomposed H;_1y = Q)R
//0(n?) using Givens rotation

(b) He) =Ry Qe
//O(n?). H, is still upper Hessenberg

e Total time complexity is O(n3).
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o Prove Hpy = R(;HQ(;) = Q(;yH(;_1)Q(;) is upper Hessenberg.

1. In 2(a), H(i_l) — Q(i)R(i), matrix Q(i) is upper Hessen-
berg. (Think about Gram-Schmidt process.)

2. In 2(b), R(Z-)Q(i) generates an upper Hessenberg matrix,
since R(;y is upper triangular.

e Adding shift: p; (LVF pp.207,208)

2(a) QR decomposed H(; 1y—pil = Q(Ryy

—Hu = RpQu + ol = Q%;)(H(i—l) — piDQey + pil =

— If p;, = rnn, the algorithm converges quadratically.



Singular Value Decomposition
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Definition
e For an m xn matrix A, there always exists an decomposition
A =UxVv!

— X is diagonal. The diagonal elements are singular values.
— U and V are orthogonal.

Eigenvalue decomp Singular value decomp
A =XAX1 A =UxV?l
matrix shape square any shape
Existence not always always
Values no restricted always > 0
Relation The eigenvalue decomposition of AT A is VX2V<:
The eigenvalue decomposition of AAT is UX2U7
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Matrix 2-norm

e Recall that ||A|l = max ||Ax]|o = max \/XTATAX
[x[l2=1 [x[[2=1

e Use the relation, ATA = vX2vT

— Matrix AT A is symmetric semipositive definite.

— Suppose the singular values in X are sorted in descending
order. VIix = e1 gives the maximum value, which is the

largest singular value.

— VIx = e; means x is the first column of V, the left sin-
gular vector corresponding to the largest singular value.
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How to compute SVD7? LvF pp.210

e Algorithm

1. Compute the eigenvalue decomposition of ATA =VAV—L
2. Compute the QR decomposition of AV = UR.

3. Let ¥ = VA,
4. A =UXV! is the SVD of A.

e A more cheap and numerically stable algorithm is like QR
method, but it is rather complicated.
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