CS 3331 Numerical Methods
 Lecture 2: Functions of One Variable

Cherung Lee

Outline

- Introduction
- Solving nonlinear equations: find x^{*} such that $f\left(x^{*}\right)=0$.
- Binary search methods: (Bisection, regula falsi)
- Newton-typed methods: (Newton's method, secant method)
- Higher order methods: (Muller's method)
- Accelerating convergence: Aitken's Δ^{2} method

Introduction

Motivating problem

- How to estimate compound interest rate?
- Example: Suppose a bank loans you 200,000 with compound interest rate. After 10 year, you need to repay 400,000 (principal+interest). Suppose the frequency of compounding is yearly. How much is the annual percentage rate (APR)?
- Equation of the compound interest: $20,000(1+r)^{10}=40,000$.
- How to solve $f(r)=(1+r)^{10}-2=0$?
$-r=\sqrt[10]{2}-1 \approx 7.1773 \%$

Amortized Loan

- Loan repaid in a series of payments for principal and interest.
- Formula: (r : interest-rate, a : payment, n : period)
- Suppose x_{k} is the debt in the k 's period.

$$
\begin{aligned}
x_{k} & =(1+r) x_{k-1}-a=(1+r)^{2} x_{k-2}-(1+r) a-a=\ldots \\
& =x_{0}(1+r)^{k}-a \frac{(1+r)^{k}-1}{r}
\end{aligned}
$$

$-x_{0}$ is the principal and $x_{n}=0 \Rightarrow x_{0}(1+r)^{n}-a \frac{(1+r)^{n}-1}{r}=0$.

- How to solve $f(r)=20(1+r)^{10}-4 \frac{(1+r)^{10}-1}{r}=0$?

Useful tools from calculus LVF pp. 10

- Intermediate value theorem

If $f(x)$ is a continuous function on the interval $[a, b]$, and $f(a)<0<f(b)$ or $f(b)<0<f(a)$, then there is a number $c \in[a, b]$ such that $f(c)=0$.

- Taylor's theorem

If $f(x)$ and all its k th derivatives are continuous on $[a, b], k=1 \cdots n$, and $f^{(n+1)}$ exists on (a, b), then for any $c \in(a, b)$ and $x \in[a, b],(\xi$ is between c and x.)
$f(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(x-c)^{k}+\frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}$.

Solving Nonlinear Equations

Bisection method LVF pp.52-55

- Binary search on the given interval $[a, b]$.
- Suppose $f(a)$ and $f(b)$ have opposite signs.
- Let $m=(a+b) / 2$. Three things could happen for $f(m)$.
* $f(m)=0 \Rightarrow m$ is the solution.
* $f(m)$ has the same sigh as $f(a) \Rightarrow$ solution in $[m, b]$.
* $f(m)$ has the same sigh as $f(b) \Rightarrow$ solution in $[a, m]$.
- Linear convergence with rate $1 / 2$.

Pros and cons

- Pros
- Easy to implement.
- Guarantee to converge with guaranteed convergent rate.
- No derivative required.
- Cost per iteration (function value evaluation) is very cheap.
- Cons
- Slow convergence.
- Do not work for double roots, like solving $(x-1)^{2}=0$

Regula falsi (false position) LVF pp.57-59

- Straight line approximation + intermediate value theorem
- Given two points $(a, f(a)),(b, f(b)), a \neq b$, the line equation

$$
L(x)=y=f(b)+\frac{f(a)-f(b)}{a-b}(x-b),
$$

and its root, $L(s)=0$, is $s=b-\frac{a-b}{f(a)-f(b)} f(b)$.

- Use intermediate value theorem to determine $x^{*} \in[a, s]$ or $x^{*} \in[s, b]$

Convergence of regula falsi

Consider a special case: $(b, f(b))$ is fixed.

- Note $[s, b]$ may not go to zero. (compare to bisection method.)
- Change measurement

$$
\frac{\left|s-x^{*}\right|}{\left|a-x^{*}\right|}=\frac{\left|(b-s)-\left(b-x^{*}\right)\right|}{\left|(b-a)-\left(b-x^{*}\right)\right|}
$$

- $b-s=\frac{-f(b)}{f(a)-f(b)}(b-a)$.
- Let $m=\frac{-f(b)}{f(a)-f(b)}<1$.

$\frac{\left|s-x^{*}\right|}{\left|a-x^{*}\right|}=\frac{\left|m(b-a)-\left(b-x^{*}\right)\right|}{\left|(b-a)-\left(b-x^{*}\right)\right|}<1$ - Linear convergence

Newton's method LVF pp.66-71

- Approximate $f(x)$ by the tangent line $f\left(x_{k}\right)+\left(x-x_{k}\right) f^{\prime}\left(x_{k}\right)$.
- Find the minimum of the square error

$$
\min _{x}|f(x)-0|^{2} \Longleftrightarrow d(f(x))^{2} / d x=0
$$

- The minimizer is $x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$
- Convergent conditions
- $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ are continuous near x^{*}, and $f^{\prime}(x) \neq 0$.
$-x_{0}$ is sufficiently close to x^{*}. $\left[\frac{\max \left|f^{\prime \prime}\right|}{2 \min \left|f^{\prime}\right|}\left|x_{0}-x^{*}\right|<1\right]$.

Convergence of Newton's method LVF pp.70-71

- Taylor expansion: for some η between x^{*} and x_{k}

$$
\begin{gathered}
f\left(x^{*}\right)=f\left(x_{k}\right)+\left(x^{*}-x_{k}\right) f^{\prime}\left(x_{k}\right)+\frac{\left(x^{*}-x_{k}\right)^{2}}{2} f^{\prime \prime}(\eta)=0 \\
x^{*}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)-\left(x^{*}-x_{k}\right)^{2} \frac{f^{\prime \prime}(\eta)}{2 f^{\prime}\left(x_{k}\right)}
\end{gathered}
$$

- Substitute Newton's step $x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)=x_{k+1}$.

$$
x^{*}-x_{k+1}=-\left(x^{*}-x_{k}\right)^{2} \frac{f^{\prime \prime}(\eta)}{2 f^{\prime}\left(x_{k}\right)}
$$

- Quadratic convergence with $\lambda=\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|$.

Oscillations in Newton's method LVF pp. 71

- Solve $f(x)=x^{3}-3 x^{2}+x+3=0$ with $x_{0}=1$.

Newton's method for repeated roots LVF pp. 72

- If x^{*} is a repeated root, Newton's method converges linearly.
- Newton's method can be regarded as a fixed-point iteration.

$$
\begin{aligned}
g(x) & =x-f(x) / f^{\prime}(x) \\
x_{n+1} & =g\left(x_{n}\right)=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)
\end{aligned}
$$

- Convergence of fixed-point iteration: LVF pp.22-23.
- Taylor expansion of $g(x)$ about x_{n} near x^{*}

$$
x_{n+1}=g\left(x_{n}\right)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x_{n}-x^{*}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(x_{n}-x^{*}\right)^{2} .
$$

- Quadratic convergence if $g^{\prime}\left(x^{*}\right)=0$.
case 1 If $f\left(x^{*}\right)$ is a simple root, $\left(f^{\prime}\left(x^{*}\right) \neq 0\right)$

$$
\begin{aligned}
& -g^{\prime}(x)=1-\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=1-1+\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \\
& -g^{\prime}\left(x^{*}\right)=0
\end{aligned}
$$

case 2 If $f\left(x^{*}\right)$ is a repeated root, $\left(f^{\prime}\left(x^{*}\right)=0\right)$

- Assume $f(x)=\left(x-x^{*}\right)^{2} h(x)$ where $h\left(x^{*}\right) \neq 0$.
$-f^{\prime}(x)=2\left(x-x^{*}\right) h(x)+\left(x-x^{*}\right)^{2} h^{\prime}(x)$.
$-g(x)=x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{\left(x-x^{*}\right) h(x)}{2 h(x)+\left(x-x^{*}\right) h^{\prime}(x)}$.
- Let $a(x)=2 h(x)+\left(x-x^{*}\right) h^{\prime}(x)$. (we will use that to simply the proof).

$$
\begin{aligned}
-g^{\prime}(x) & =1-\frac{\left(h(x)+\left(x-x^{*}\right) h^{\prime}(x)\right) a(x)-\left(x-x^{*}\right) h(x) a^{\prime}(x)}{(a(x))^{2}} \\
-a\left(x^{*}\right) & =2 h\left(x^{*}\right)+\left(x^{*}-x^{*}\right) h^{\prime}\left(x^{*}\right)=2 h\left(x^{*}\right) \neq 0 \\
g^{\prime}\left(x^{*}\right) & =1-\frac{\left(h\left(x^{*}\right)+\left(x^{*}-x^{*}\right) h^{\prime}\left(x^{*}\right)\right) a\left(x^{*}\right)-\left(x^{*}-x^{*}\right) h\left(x^{*}\right) a^{\prime}\left(x^{*}\right)}{a\left(x^{*}\right)^{2}} \\
& =1-\frac{h\left(x^{*}\right)}{a\left(x^{*}\right)}=\frac{h\left(x^{*}\right)}{2 h\left(x^{*}\right)}=1-1 / 2 \neq 0 .
\end{aligned}
$$

\Rightarrow When x^{*} is a repeated root, convergence is linear.

- How to modify it to restore the quadratic convergence?
- For $f(x)=\left(x-x^{*}\right)^{2} h(x)$, let $g(x)=x-2 \frac{f(x)}{f^{\prime}(x)} \Rightarrow g^{\prime}\left(x^{*}\right)=0$.
- The algorithm becomes $x_{k+1}=x_{k}-2 \frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}$

Secant method LVF pp.60-65

- Newton's method requires derivative at each step.
- $f^{\prime}\left(x_{k}\right)$ can be approximated by $\frac{f\left(x_{k-1}\right)-f\left(x_{k}\right)}{x_{k-1}-x_{k}}$, which make

$$
x_{k+1}=x_{k}-\frac{x_{k-1}-x_{k}}{f\left(x_{k-1}\right)-f\left(x_{k}\right)} f\left(x_{k}\right) .
$$

- Convergent conditions
- $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ are continuous near x^{*}, and $f^{\prime}(x) \neq 0$.
- Initial guesses x_{0}, x_{1} are sufficiently close to x^{*}. $\max \left(M\left|x_{0}-x^{*}\right|, M\left|x_{1}-x^{*}\right|\right)<1$, where $M=\max \left|f^{\prime \prime}\right| / 2 \min \left|f^{\prime}\right|$

Convergence of the secant method

- Let $e_{k}=x_{k}-x^{*}$

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-\frac{x_{k-1}-x_{k}}{f\left(x_{k-1}\right)-f\left(x_{k}\right)} f\left(x_{k}\right)-x^{*} \\
& =\frac{\left(x_{k-1}-x^{*}\right) f\left(x_{k}\right)-\left(x_{k}-x^{*}\right) f\left(x_{k-1}\right)}{f\left(x_{k-1}\right)-f\left(x_{k}\right)} \\
& =\frac{e_{k-1} f\left(x_{k}\right)-e_{k} f\left(x_{k-1}\right)}{f\left(x_{k-1}\right)-f\left(x_{k}\right)}
\end{aligned}
$$

- Using Taylor expansion

$$
\begin{aligned}
& f\left(x_{k}\right)=f\left(x^{*}\right)^{+q} e_{k} f^{\prime}\left(x^{*}\right)+e_{k}^{2} f^{\prime \prime}\left(x^{*}\right) / 2+O\left(e_{k}^{3}\right) \\
& f\left(x_{k-1}\right)=f\left(x^{*}\right)^{+q} e_{k-1} f^{\prime}\left(x^{*}\right)+e_{k-1}^{2} f^{\prime \prime}\left(x^{*}\right) / 2+O\left(e_{k-1}^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{k-1}\right)-f\left(x_{k}\right) & =\left(e_{k-1}-e_{k}\right) f^{\prime}\left(x^{*}\right)+\left(e_{k-1}^{2}-e_{k}^{2}\right) f^{\prime \prime}\left(x^{*}\right) / 2+O\left(e_{k-1}^{3}\right) \\
& \approx\left(e_{k-1}-e_{k}\right) f^{\prime}\left(x^{*}\right)
\end{aligned}
$$

(We assume e_{k} is small enough so that $\left|e_{k}\right|^{3} \ll\left|e_{k}\right|^{2} \ll\left|e_{k}\right|$.)

$$
\begin{aligned}
e_{k} f\left(x_{k-1}\right)-e_{k-1} f\left(x_{k}\right) & =\frac{\left(e_{k-1} e_{k}-e_{k} e_{k-1}\right) f^{\prime}\left(x^{*}\right)+}{\left(e_{k} e_{k-1}^{2}-e_{k}^{2} e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right) / 2+O\left(e_{k-1}^{3}\right)} \\
& \approx e_{k} e_{k-1}\left(e_{k-1}-e_{k}\right) f^{\prime \prime}\left(x^{*}\right) / 2
\end{aligned}
$$

- Summarizing above equations

$$
\begin{aligned}
e_{k+1} & =\frac{e_{k-1} f\left(x_{k}\right)-e_{k} f\left(x_{k-1}\right)}{f\left(x_{k-1}\right)-f\left(x_{k}\right)} \\
& =\frac{e_{k} e_{k-1}\left(e_{k-1}-e_{k}\right) f^{\prime \prime}\left(x^{*}\right) / 2}{\left(e_{k-1}-e_{k}\right) f^{\prime}\left(x^{*}\right)} \\
& =\frac{e_{k-1} e_{k} f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}
\end{aligned}
$$

- We want to prove $\left|e_{k+1}\right|=C\left|e_{k}\right|^{\alpha}$
- $\left|\frac{e_{k-1} e_{k} f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|=C\left|e_{k}\right|^{\alpha}$
- Recursively, $\left|e_{k}\right|=C\left|e_{k-1}\right|^{\alpha}$.

$$
\left|\frac{C e_{k-1}^{1+\alpha} f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|=C^{1+\alpha}\left|e_{k-1}\right|^{\alpha^{2}} \Rightarrow\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|=C^{\alpha}\left|e_{k-1}\right|^{\alpha^{2}-\alpha-1}
$$

- $\left|e_{k-1}\right|^{\alpha^{2}-\alpha-1}$ equals to a constant, $\alpha^{2}-\alpha-1=0$. $\alpha=(1+\sqrt{5}) / 2=1.618$
- $C=\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|^{1 / \alpha} \approx\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|^{0.618}$
- Superlinear convergence with $\lambda=\left|\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right|^{0.618}$

Muller's method LVF pp.73-77

- Approximate $f(x)$ by a parabola.
- A parabola passes $\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right),\left(x_{3}, f\left(x_{3}\right)\right)$ is

$$
\begin{gathered}
P(x)=f\left(x_{3}\right)+c_{2}\left(x-x_{3}\right)+d_{1}\left(x-x_{3}\right)\left(x-x_{2}\right), \\
c_{1}=\frac{f\left(x_{1}\right)-f\left(x_{3}\right)}{x_{1}-x_{3}}, c_{2}=\frac{f\left(x_{2}\right)-f\left(x_{3}\right)}{x_{2}-x_{3}}, d_{1}=\frac{c_{1}-c_{2}}{x_{1}-x_{2}} .
\end{gathered}
$$

- We want to find a solution closer to x_{3}. Let $y=x-x_{3}$ and rewrite $P(x)$ as a function of y.

$$
\begin{aligned}
P(x) & =f\left(x_{3}\right)+c_{2}\left(x-x_{3}\right)+d_{1}\left(x-x_{3}\right)\left(x-x_{2}\right) \\
& =f\left(x_{3}\right)+c_{2}\left(x-x_{3}\right)+d_{1}\left(x-x_{3}\right)\left(x-x_{3}+x_{3}-x_{2}\right) \\
& =f\left(x_{3}\right)+c_{2} y+d_{1} y\left(y+x_{3}-x_{2}\right) \\
& =f\left(x_{3}\right)+\left(c_{2}+d_{1}\left(x_{3}-x_{2}\right)\right) y+d_{1} y^{2}
\end{aligned}
$$

- Let $s=c_{2}+d_{1}\left(x_{3}-x_{2}\right)$. The solution is

$$
y=\frac{-s \pm \sqrt{s^{2}-4 d_{1} f\left(x_{3}\right)}}{2 d_{1}}, x=x_{3}-\frac{s \pm \sqrt{s^{2}-4 d_{1} f\left(x_{3}\right)}}{2 d_{1}}
$$

- Let x_{4} be the solution closer to $x_{3}, x_{4}=x_{3}-\frac{s-\operatorname{sign}(s) \sqrt{s^{2}-4 d_{1} f\left(x_{3}\right)}}{2 d_{1}}$, which equals to (in a more stable way)

$$
x_{4}=x_{3}-\frac{2 f\left(x_{3}\right)}{s+\operatorname{sign}(s) \sqrt{s^{2}-4 f\left(x_{3}\right) d_{1}}}
$$

- x_{4} is the a better approximation to x^{*} than x_{3}.
- Use $\left(x_{2}, f\left(x_{2}\right)\right),\left(x_{3}, f\left(x_{3}\right)\right),\left(x_{4}, f\left(x_{4}\right)\right)$ as next three parameters, and continue the process until converging.

Properties of Muller's method

- No derivative needed
- Can find complex roots
- Fails if $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)$, when x is a repeated root.
- Superlinear convergence, $p \approx 1.84$, with

$$
\lambda=\left|f^{\prime \prime \prime}\left(x^{*}\right)\right|^{\beta} /\left|2 f^{\prime}\left(x^{*}\right)\right|^{\beta}
$$

where $\beta=(p-1) / 2$. The proof is similar to the secant method's.

Accelerating convergence

Aitken's Δ^{2} method

- Accelerate the convergence of a linearly convergent sequence.
- Suppose $\left\{p_{k}\right\}_{k=0}^{\infty} \rightarrow p$ linearly, and $\left(p_{k+1}-p\right) /\left(p_{k}-p\right)>0$ for $k>N$, where N is some constant. Then the sequence

$$
q_{k}=p_{k}-\frac{\left(p_{k+1}-p_{k}\right)^{2}}{p_{k+2}-2 p_{k+1}+p_{k}}
$$

converges to p, with better convergence order than p_{k},

$$
\lim _{k \rightarrow \infty} \frac{q_{k}-p}{p_{k}-p}=0
$$

LVF pp.197, also check last year's notes.

Sketch of the proof

- Since $\lim _{k \rightarrow}\left(p_{k+1}-p\right) /\left(p_{k}-p\right)=\lambda>0$, for large k

$$
\frac{p_{k+1}-p}{p_{k}-p} \approx \frac{p_{k+2}-p}{p_{k+1}-p}
$$

- Expanding the terms yields

$$
p \approx p_{k}-\frac{\left(p_{k+1}-p_{k}\right)^{2}}{p_{k+2}-2 p_{k+1}+p_{k}}=q_{k}
$$

- Comparing $q_{k}-p$ and $p_{k}-p$ for large k gives

$$
\lim _{k \rightarrow \infty} \frac{q_{k}-p}{p_{k}-p}=0
$$

