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Outline

• Introduction

• Solving nonlinear equations: find x∗ such that f(x∗) = 0.

– Binary search methods: (Bisection, regula falsi)

– Newton-typed methods: (Newton’s method, secant method)

– Higher order methods: (Muller’s method)

• Accelerating convergence: Aitken’s ∆2 method
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Introduction
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Motivating problem

• How to estimate compound interest rate?

– Example: Suppose a bank loans you 200,000 with com-

pound interest rate. After 10 year, you need to repay

400,000 (principal+interest). Suppose the frequency of

compounding is yearly. How much is the annual percent-

age rate (APR)?

• Equation of the compound interest: 20,000(1+r)10 = 40,000.

– How to solve f(r) = (1 + r)10 − 2 = 0?

– r = 10
√

2 − 1 ≈ 7.1773%
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Amortized Loan

• Loan repaid in a series of payments for principal and interest.

• Formula: (r: interest-rate, a: payment, n: period)

– Suppose xk is the debt in the k’s period.

xk = (1 + r)xk−1 − a = (1 + r)2xk−2 − (1 + r)a − a = ...

= x0(1 + r)k − a
(1 + r)k − 1

r

– x0 is the principal and xn = 0 ⇒ x0(1+r)n−a(1+r)n−1
r = 0.

• How to solve f(r) = 20(1 + r)10 − 4(1+r)10−1
r = 0?
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Useful tools from calculus LVF pp.10

• Intermediate value theorem

If f(x) is a continuous function on the interval [a, b],
and f(a) < 0 < f(b) or f(b) < 0 < f(a), then there is a

number c ∈ [a, b] such that f(c) = 0.

• Taylor’s theorem

If f(x) and all its kth derivatives are continuous on

[a, b], k = 1 · · ·n, and f(n+1) exists on (a, b), then for

any c ∈ (a, b) and x ∈ [a, b], (ξ is between c and x.)

f(x) =
n

∑

k=0

1

k!
f(k)(c)(x−c)k+

1

(n + 1)!
f(n+1)(ξ)(x−c)n+1.
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Solving Nonlinear Equations
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Bisection method LVF pp.52-55

• Binary search on the given interval [a, b].

– Suppose f(a) and f(b) have opposite signs.

– Let m = (a + b)/2. Three things could happen for f(m).

∗ f(m) = 0 ⇒ m is the solution.

∗ f(m) has the same sigh as f(a) ⇒ solution in [m, b].

∗ f(m) has the same sigh as f(b) ⇒ solution in [a, m].

• Linear convergence with rate 1/2.
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Pros and cons

• Pros

– Easy to implement.

– Guarantee to converge with guaranteed convergent rate.

– No derivative required.

– Cost per iteration (function value evaluation) is very cheap.

• Cons

– Slow convergence.

– Do not work for double roots, like solving (x − 1)2 = 0
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Regula falsi (false position) LVF pp.57-59

• Straight line approximation + intermediate value theorem

• Given two points (a, f(a)), (b, f(b)), a 6= b, the line equation

L(x) = y = f(b) +
f(a) − f(b)

a − b
(x − b),

and its root, L(s) = 0, is s = b − a−b
f(a)−f(b)

f(b).

• Use intermediate value theorem to determine x∗ ∈ [a, s] or

x∗ ∈ [s, b]
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Convergence of regula falsi

Consider a special case: (b, f(b)) is fixed.

• Note [s, b] may not go to zero.

(compare to bisection method.)

• Change measurement

|s − x∗|
|a − x∗|

=
|(b − s) − (b − x∗)|
|(b − a) − (b − x∗)|

• b − s =
−f(b)

f(a) − f(b)
(b − a).

• Let m =
−f(b)

f(a) − f(b)
< 1.

|s − x∗|
|a − x∗|

=
|m(b − a) − (b − x∗)|
|(b − a) − (b − x∗)|

< 1 • Linear convergence
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Newton’s method LVF pp.66-71

• Approximate f(x) by the tangent line f(xk)+ (x− xk)f
′(xk).

• Find the minimum of the square error

min
x

|f(x) − 0|2 ⇐⇒ d(f(x))2/dx = 0

• The minimizer is xk+1 = xk − f(xk)
f ′(xk)

• Convergent conditions

– f(x), f ′(x), f ′′(x) are continuous near x∗, and f ′(x) 6= 0.

– x0 is sufficiently close to x∗.
[

max |f ′′|
2min |f ′||x0 − x∗| < 1

]

.
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Convergence of Newton’s method LVF pp.70-71

• Taylor expansion: for some η between x∗ and xk

f(x∗) = f(xk) + (x∗ − xk)f
′(xk) +

(x∗ − xk)
2

2
f ′′(η) = 0

x∗ = xk − f(xk)/f ′(xk) − (x∗ − xk)
2 f ′′(η)
2f ′(xk)

• Substitute Newton’s step xk − f(xk)/f ′(xk) = xk+1.

x∗ − xk+1 = −(x∗ − xk)
2 f ′′(η)
2f ′(xk)

• Quadratic convergence with λ =

∣

∣

∣

∣

f ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

.
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Oscillations in Newton’s method LVF pp.71

• Solve f(x) = x3 − 3x2 + x + 3 = 0 with x0 = 1.
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Newton’s method for repeated roots LVF pp.72

• If x∗ is a repeated root, Newton’s method converges linearly.

• Newton’s method can be regarded as a fixed-point iteration.

g(x) = x − f(x)/f ′(x),
xn+1 = g(xn) = xn − f(xn)/f ′(xn).

– Convergence of fixed-point iteration: LVF pp.22-23.

• Taylor expansion of g(x) about xn near x∗

xn+1 = g(xn) = g(x∗) + g′(x∗)(xn − x∗) +
g′′(ξ)

2
(xn − x∗)2.

– Quadratic convergence if g′(x∗) = 0.
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case 1 If f(x∗) is a simple root, (f ′(x∗) 6= 0)

– g′(x) = 1−f ′(x)f ′(x)−f(x)f ′′(x)
(f ′(x))2 = 1−1+f(x)f ′′(x)

(f ′(x))2 = f(x)f ′′(x)
(f ′(x))2 .

– g′(x∗) = 0

case 2 If f(x∗) is a repeated root, (f ′(x∗) = 0)

– Assume f(x) = (x − x∗)2h(x) where h(x∗) 6= 0.

– f ′(x) = 2(x − x∗)h(x) + (x − x∗)2h′(x).

– g(x) = x − f(x)
f ′(x) = x − (x−x∗)h(x)

2h(x)+(x−x∗)h′(x).

– Let a(x) = 2h(x) + (x − x∗)h′(x). (we will use that to

simply the proof).



– g′(x) = 1 − (h(x)+(x−x∗)h′(x))a(x)−(x−x∗)h(x)a′(x)
(a(x))2

– a(x∗) = 2h(x∗) +
(

(
(

(
(

((
(

(
(

(
((

((

(x∗ − x∗)h′(x∗) = 2h(x∗) 6= 0

g′(x∗) = 1 − (h(x∗) +
(

((
(

(
(

(
((

(
(

(
(

((

(x∗ − x∗)h′(x∗))a(x∗) −
(

(
((

(
(

(
(

((
(

(
(

(
((

(
(

((

(x∗ − x∗)h(x∗)a′(x∗)
a(x∗)2

= 1 − h(x∗)
a(x∗)

=
h(x∗)
2h(x∗)

= 1 − 1/2 6= 0.

⇒ When x∗ is a repeated root, convergence is linear.

• How to modify it to restore the quadratic convergence?

– For f(x)=(x− x∗)2h(x), let g(x)=x− 2 f(x)
f ′(x) ⇒ g′(x∗)=0.

– The algorithm becomes xk+1 = xk − 2
f(xk)
f ′(xk)



Secant method LVF pp.60-65

• Newton’s method requires derivative at each step.

• f ′(xk) can be approximated by
f(xk−1)−f(xk)

xk−1−xk
, which make

xk+1 = xk − xk−1 − xk

f(xk−1) − f(xk)
f(xk).

• Convergent conditions

– f(x), f ′(x), f ′′(x) are continuous near x∗, and f ′(x) 6= 0.

– Initial guesses x0, x1 are sufficiently close to x∗.
max(M |x0−x∗|, M |x1−x∗|) < 1, where M = max |f ′′|/2min |f ′|

15



Convergence of the secant method

• Let ek = xk − x∗

ek+1 = xk+1 − x∗

= xk − xk−1 − xk

f(xk−1) − f(xk)
f(xk) − x∗

=
(xk−1 − x∗)f(xk) − (xk − x∗)f(xk−1)

f(xk−1) − f(xk)

=
ek−1f(xk) − ekf(xk−1)

f(xk−1) − f(xk)

• Using Taylor expansion

f(xk) = �
�

�
�

�
�:0f(x∗) + ekf ′(x∗) + e2kf ′′(x∗)/2 + O(e3k)

f(xk−1) = �
�

�
�

�
�:0f(x∗) + ek−1f ′(x∗) + e2k−1f ′′(x∗)/2 + O(e3k−1)
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f(xk−1) − f(xk) = (ek−1 − ek)f
′(x∗) + (e2k−1 − e2k)f

′′(x∗)/2 + O(e3k−1)

≈ (ek−1 − ek)f
′(x∗)

(We assume ek is small enough so that |ek|3 ≪ |ek|2 ≪ |ek|.)

ekf(xk−1) − ek−1f(xk) =
(

(
(

(
(

((
(

(
(

(
((

(
(

(
(

((
(

(
(

((

(ek−1ek − ekek−1)f
′(x∗) +

(eke2k−1 − e2kek−1)f
′′(x∗)/2 + O(e3k−1)

≈ ekek−1(ek−1 − ek)f
′′(x∗)/2

• Summarizing above equations

ek+1 =
ek−1f(xk) − ekf(xk−1)

f(xk−1) − f(xk)

=
ekek−1(ek−1 − ek)f

′′(x∗)/2
(ek−1 − ek)f

′(x∗)

=
ek−1ekf ′′(x∗)

2f ′(x∗)



• We want to prove |ek+1| = C|ek|α

•
∣

∣

∣

∣

∣

ek−1ekf ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

∣

= C|ek|α

• Recursively, |ek| = C|ek−1|α.
∣

∣

∣

∣

∣

∣

Ce1+α
k−1 f ′′(x∗)

2f ′(x∗)

∣

∣

∣

∣

∣

∣

= C1+α|ek−1|α
2 ⇒

∣

∣

∣

∣

∣

f ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

∣

= Cα|ek−1|α
2−α−1

• |ek−1|α
2−α−1 equals to a constant, α2 − α − 1 = 0.

α = (1 +
√

5)/2 = 1.618

• C =

∣

∣

∣

∣

f ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

1/α
≈

∣

∣

∣

∣

f ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

0.618

• Superlinear convergence with λ =

∣

∣

∣

∣

f ′′(x∗)
2f ′(x∗)

∣

∣

∣

∣

0.618



Muller’s method LVF pp.73-77

• Approximate f(x) by a parabola.

• A parabola passes (x1, f(x1)), (x2, f(x2)), (x3, f(x3)) is

P(x) = f(x3) + c2(x − x3) + d1(x − x3)(x − x2),

c1 =
f(x1) − f(x3)

x1 − x3
, c2 =

f(x2) − f(x3)

x2 − x3
, d1 =

c1 − c2
x1 − x2

.

• We want to find a solution closer to x3. Let y = x − x3 and
rewrite P(x) as a function of y.

P(x) = f(x3) + c2(x − x3) + d1(x − x3)(x − x2)

= f(x3) + c2(x − x3) + d1(x − x3)(x − x3 + x3 − x2)

= f(x3) + c2y + d1y(y + x3 − x2)

= f(x3) + (c2 + d1(x3 − x2))y + d1y2
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• Let s = c2 + d1(x3 − x2). The solution is

y =
−s ±

√

s2 − 4d1f(x3)

2d1
, x = x3 −

s ±
√

s2 − 4d1f(x3)

2d1

• Let x4 be the solution closer to x3, x4 = x3−s−sign(s)
√

s2−4d1f(x3)
2d1

,

which equals to (in a more stable way)

x4 = x3 − 2f(x3)

s + sign(s)
√

s2 − 4f(x3)d1

.

• x4 is the a better approximation to x∗ than x3.

• Use (x2, f(x2)), (x3, f(x3)), (x4, f(x4)) as next three parame-

ters, and continue the process until converging.



Properties of Muller’s method

• No derivative needed

• Can find complex roots

• Fails if f(x1) = f(x2) = f(x3), when x is a repeated root.

• Superlinear convergence, p ≈ 1.84, with

λ = |f ′′′(x∗)|β/|2f ′(x∗)|β,

where β = (p − 1)/2. The proof is similar to the secant

method’s.
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Accelerating convergence
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Aitken’s ∆2 method

• Accelerate the convergence of a linearly convergent sequence.

• Suppose {pk}∞k=0 → p linearly, and (pk+1− p)/(pk − p) > 0 for

k > N , where N is some constant. Then the sequence

qk = pk − (pk+1 − pk)
2

pk+2 − 2pk+1 + pk

converges to p, with better convergence order than pk,

lim
k→∞

qk − p

pk − p
= 0.

LVF pp.197, also check last year’s notes.
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Sketch of the proof

• Since limk→(pk+1 − p)/(pk − p) = λ > 0, for large k

pk+1 − p

pk − p
≈ pk+2 − p

pk+1 − p
.

• Expanding the terms yields

p ≈ pk − (pk+1 − pk)
2

pk+2 − 2pk+1 + pk
= qk.

• Comparing qk − p and pk − p for large k gives

lim
k→∞

qk − p

pk − p
= 0.
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