CS3331 Numerical Method

Homework 9 and its solution

$f(x)=e^{x}-x$ is defined in $[-1,1]$.

1. Compute $\|f(x)\|_{1}$
$f(x)>0$ in the interval $[-1,1]$.

$$
\begin{aligned}
\|f(x)\|_{1} & =\int_{-1}^{1}|f(x)| d x \\
& =\int_{-1}^{1}\left(e^{x}-x\right) d x \\
& =e^{x}-\left.\frac{1}{2} x^{2}\right|_{-1} ^{1} \\
& =e-e^{-1}
\end{aligned}
$$

2. Compute $\|f(x)\|_{\infty}$

$$
\|f(x)\|_{\infty}=\sup _{x \in[-1,1]}|f(x)|
$$

$f^{\prime}(x)=e^{x}-1=0$. The extreme value of $f(x)$ is at $x=0$. But it is the minimum value. The largest value of $f(x)$ in $[-1,1]$ is at boundaries, either at -1 or 1 .

$$
\begin{gathered}
f(1)=e-1 \approx 1.718>f(-1)=e^{-1}+1 \approx 1.36 \\
\|f(x)\|_{\infty}=f(1)=e-1
\end{gathered}
$$

3. Approximate $f(x)$ by Legendre polynomials of degree 0 and 1 .

Legendre polynomials of degree 0 and 1 are 1 and x.

$$
\begin{aligned}
<f(x), 1> & =\int_{-1}^{1}\left(e^{x}-x\right) d x \\
& =e^{x}-\left.\frac{1}{2} x^{2}\right|_{-1} ^{1}=e-e^{-1} \\
<f(x), x> & =\int_{-1}^{1}\left(e^{x}-x\right) x d x \\
& =\left.e^{x} x\right|_{-1} ^{1}-\int_{-1}^{1} e^{x} d x-\left.\frac{1}{3} x^{3}\right|_{-1} ^{1} \\
& =\left(e+e^{-1}\right)-\left(e-e^{-1}\right)-2 / 3=2 e^{-1}-2 / 3
\end{aligned}
$$

Approximation is

$$
\begin{aligned}
p(x) & =\frac{\langle f(x), 1\rangle}{\langle 1,1>} 1+\frac{\langle f(x), x\rangle}{\langle x, x\rangle} x \\
& =\frac{e-e^{-1}}{2} 1+\frac{2 e^{-1}-2 / 3}{2 / 3} x
\end{aligned}
$$

4. Approximate $f(x)$ by Chevyshev polynomials of degree 0 and 1 .

Chevyshev polynomials of degree 0 and 1 are 1 and x.

$$
\begin{aligned}
& <f(x), 1>=\int_{-1}^{1} \frac{e^{x}-x}{\sqrt{1-x^{2}}} d x \\
& <f(x), x>=\int_{-1}^{1} \frac{\left(e^{x}-x\right) x}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

We need to change variables.
Let $x=\cos \theta$. Then $d x=-\sin \theta d \theta$ and $\sqrt{1-x^{2}}=\sin \theta$.

$$
\begin{aligned}
& <f(x), 1>=\int_{0}^{\pi}\left(e^{\cos \theta}-\cos \theta\right) d \theta=\int_{0}^{\pi} e^{\cos \theta} d \theta \\
& <f(x), x>=\int_{0}^{\pi}\left(e^{\cos \theta}-\cos \theta\right) \cos \theta d \theta
\end{aligned}
$$

The integration is difficult. We just write the approximate as

$$
p(x)=\frac{\langle f(x), 1>}{\langle 1,1>} 1+\frac{\langle f(x), x\rangle}{\langle x, x\rangle} x
$$

