1 Condition number estimation algorithm

The condition number estimation algorithm in textbook 126 is based on the 1-norm estimation algorithm of $\|\mathbf{A}^{-1}\|$. Once it has $\|\mathbf{A}^{-1}\|_1$, the condition number equals to $\|\mathbf{A}\|_1 \|\mathbf{A}^{-1}\|_1$.

Here we only discuss the algorithm of estimating $\|\mathbf{A}\|_1$. By replacing all the matrix-vector multiplication $\mathbf{A}\mathbf{x}, \mathbf{A}^T\mathbf{x}$ by linear system solving $\mathbf{A}\mathbf{y} = \mathbf{x}, \mathbf{A}^T\mathbf{y} = \mathbf{x}$, the algorithm can estimate $\|\mathbf{A}^{-1}\|_1$.

The algorithm of estimating $\|\mathbf{A}\|_1$ is described as follows

- 1. **v** is an initial vector with $\|\mathbf{v}\|_1 = 1$
- 2. For $k = 1, 2, \ldots$
 - (a) $\mathbf{u} = \mathbf{A}\mathbf{v}$.
 - (b) $\mathbf{w} = \operatorname{sign}(\mathbf{u})$
 - (c) $\mathbf{x} = \mathbf{A}^T \mathbf{w}$
 - (d) Compute $\|\mathbf{x}\|_{\infty}$ and let j be the index of $|x_j| = \|\mathbf{x}\|_{\infty}$.
 - (e) if $(\|\mathbf{x}\|_{\infty} \leq \|\mathbf{u}\|_1)$ return $\|\mathbf{u}\|_1$.
 - (f) $\mathbf{v} = \mathbf{e}_j$, and loop-back

Initially, we pick an arbitrary vector \mathbf{v} with $\|\mathbf{v}\|_1 = 1$. After that, we will search $j_1, j_2 \cdots$, such that

$$\|\mathbf{A}\mathbf{e}_{j_1}\|_1 > \|\mathbf{A}\mathbf{e}_{j_2}\|_1 > \cdots$$

where \mathbf{e}_{j_i} is a vector with the j_i th element 1 and others 0. The reason is the definition of matrix 1-norm is

$$\|\mathbf{A}\|_{1} = \max_{j \in \{1, 2, \dots, n\}} \|\mathbf{A}\mathbf{e}_{j}\|_{1}$$

Therefore, in each loop, what the algorithm does is to find a j such that

$$\|\mathbf{A}\mathbf{e}_{j}\|_{1} > \|\mathbf{A}\mathbf{v}\|_{1} = \|\mathbf{u}\|_{1}$$
 (1)

until no such j can be found.

In step 2.(b), the algorithm defines an auxiliary vector $\mathbf{w} = \operatorname{sign}(\mathbf{u})$ ($w_i = \operatorname{sign}(u_i)$). By using that, $\|\mathbf{u}\|_1$ can be expressed as $\mathbf{w}^T \mathbf{u}$. Since elements in

w are ± 1 (or 0), it is always true that $\|\mathbf{A}\mathbf{e}_j\|_1 \ge |\mathbf{w}^T\mathbf{A}\mathbf{e}_j|$ for any j. As the result, the problem can be simplified as: Find a j such that

$$|\mathbf{w}^T \mathbf{A} \mathbf{e}_j| > \|\mathbf{u}\|_1.$$

The problem in equation (2) is much simpler than the one in (1). In (1), one needs to go through entire matrix \mathbf{A} , but in (2), one only needs to search a vector $\mathbf{w}^T \mathbf{A}$. Step 2.(c) defines $\mathbf{x} = \mathbf{A}^T \mathbf{w}$. Equation (2) is equivalent to find an element x_j in \mathbf{x} such that $|x_j| > ||\mathbf{u}||_1$. An best choice is the maximum absolute valued element in \mathbf{x} , which equals to $||\mathbf{x}||_{\infty}$.

Step 2.(e) compares $\|\mathbf{x}\|_{\infty}$ and $\|\mathbf{u}\|_1$. If $\|\mathbf{x}\|_{\infty}$ is larger, then one finds the j, since

$$\|\mathbf{A}\mathbf{e}_j\|_1 \ge |\mathbf{w}^T \mathbf{A}\mathbf{e}_j| = \|\mathbf{x}\|_{\infty} > \|\mathbf{u}\|_1.$$

Otherwise, the program returns $\|\mathbf{u}\|_1$ as the estimation.