1 Condition number estimation algorithm

The condition number estimation algorithm in textbook 126 is based on the 1-norm estimation algorithm of $\left\|\mathbf{A}^{-1}\right\|$. Once it has $\left\|\mathbf{A}^{-1}\right\|_{1}$, the condition number equals to $\|\mathbf{A}\|_{1}\left\|\mathbf{A}^{-1}\right\|_{1}$.

Here we only discuss the algorithm of estimating $\|\mathbf{A}\|_{1}$. By replacing all the matrix-vector multiplication $\mathbf{A x}, \mathbf{A}^{T} \mathbf{x}$ by linear system solving $\mathbf{A y}=$ $\mathbf{x}, \mathbf{A}^{T} \mathbf{y}=\mathbf{x}$, the algorithm can estimate $\left\|\mathbf{A}^{-1}\right\|_{1}$.

The algorithm of estimating $\|\mathbf{A}\|_{1}$ is described as follows

1. \mathbf{v} is an initial vector with $\|\mathbf{v}\|_{1}=1$
2. For $k=1,2, \ldots$
(a) $\mathbf{u}=\mathbf{A v}$.
(b) $\mathbf{w}=\operatorname{sign}(\mathbf{u})$
(c) $\mathbf{x}=\mathbf{A}^{T} \mathbf{w}$
(d) Compute $\|\mathbf{x}\|_{\infty}$ and let j be the index of $\left|x_{j}\right|=\|\mathbf{x}\|_{\infty}$.
(e) if $\left(\|\mathbf{x}\|_{\infty} \leq\|\mathbf{u}\|_{1}\right)$ return $\|\mathbf{u}\|_{1}$.
(f) $\mathbf{v}=\mathbf{e}_{j}$, and loop-back

Initially, we pick an arbitrary vector \mathbf{v} with $\|\mathbf{v}\|_{1}=1$. After that, we will search $j_{1}, j_{2} \cdots$, such that

$$
\left\|\mathbf{A e}_{j_{1}}\right\|_{1}>\left\|\mathbf{A} \mathbf{e}_{j_{2}}\right\|_{1}>\cdots
$$

where $\mathbf{e}_{j_{i}}$ is a vector with the j_{i} th element 1 and others 0 . The reason is the definition of matrix 1 -norm is

$$
\|\mathbf{A}\|_{1}=\max _{j \in\{1,2, \ldots, n\}}\left\|\mathbf{A e}_{j}\right\|_{1} .
$$

Therefore, in each loop, what the algorithm does is to find a j such that

$$
\begin{equation*}
\left\|\mathbf{A} \mathbf{e}_{j}\right\|_{1}>\|\mathbf{A} \mathbf{v}\|_{1}=\|\mathbf{u}\|_{1} \tag{1}
\end{equation*}
$$

until no such j can be found.
In step 2.(b), the algorithm defines an auxiliary vector $\mathbf{w}=\operatorname{sign}(\mathbf{u})\left(w_{i}=\right.$ $\left.\operatorname{sign}\left(u_{i}\right)\right)$. By using that, $\|\mathbf{u}\|_{1}$ can be expressed as $\mathbf{w}^{T} \mathbf{u}$. Since elements in
\mathbf{w} are ± 1 (or 0), it is always true that $\left\|\mathbf{A e}_{j}\right\|_{1} \geq\left|\mathbf{w}^{T} \mathbf{A} \mathbf{e}_{j}\right|$ for any j. As the result, the problem can be simplified as: Find a j such that

$$
\begin{equation*}
\left|\mathbf{w}^{T} \mathbf{A} \mathbf{e}_{j}\right|>\|\mathbf{u}\|_{1} . \tag{2}
\end{equation*}
$$

The problem in equation (2) is much simpler than the one in (1). In (1), one needs to go through entire matrix \mathbf{A}, but in (2), one only needs to search a vector $\mathbf{w}^{T} \mathbf{A}$. Step 2.(c) defines $\mathbf{x}=\mathbf{A}^{T} \mathbf{w}$. Equation (2) is equivalent to find an element x_{j} in \mathbf{x} such that $\left|x_{j}\right|>\|\mathbf{u}\|_{1}$. An best choice is the maximum absolute valued element in \mathbf{x}, which equals to $\|\mathbf{x}\|_{\infty}$.

Step 2.(e) compares $\|\mathbf{x}\|_{\infty}$ and $\|\mathbf{u}\|_{1}$. If $\|\mathbf{x}\|_{\infty}$ is larger, then one finds the j, since

$$
\left\|\mathbf{A} \mathbf{e}_{j}\right\|_{1} \geq\left|\mathbf{w}^{T} \mathbf{A} \mathbf{e}_{j}\right|=\|\mathbf{x}\|_{\infty}>\|\mathbf{u}\|_{1} .
$$

Otherwise, the program returns $\|\mathbf{u}\|_{1}$ as the estimation.

