CS 3331 Numerical Methods Introduction to BLAS/LAPACK

Cherung Lee

Outline

- Block algorithms
- Memory hierarchy
- Matrix-matrix multiplication
- BLAS/LAPACK

Block Algorithms

Memory hierarchy*

- Running time
- Flops*(time per flop)
- Words moved/bandwidth
- Messages*latency
- Trend (improvement/year)
- Time per flop : 59\%.
- Memory BW : 23\%
- Memory latency : 5.5\%
*Jim Demmel's talk at MMDS2008

Ratio of flops to memory access

- Let f be the number of flops, m be number of memory access. Then $q=f / m$ is the ratio of flops to memory access.
- Let $t_{\text {comp }}$ be the time per flops, $t_{\text {mem }}$ be the time per memory access. The running time is

$$
f \cdot t_{\mathrm{comp}}+m \cdot t_{\mathrm{mem}}=f \cdot t_{\mathrm{comp}}\left(1+\frac{m \cdot t_{\mathrm{mem}}}{f \cdot t_{\mathrm{comp}}}\right)=f \cdot t_{\mathrm{comp}}\left(1+\frac{t_{\mathrm{mem}}}{q \cdot t_{\mathrm{comp}}}\right)
$$

Operation	f	m	q
$\mathbf{y}=\alpha \mathbf{x}+\mathbf{y}$	$2 n$	$3 n+1$	$2 / 3$
$\mathbf{y}=\mathbf{A x}+\mathbf{y}$	$2 n^{2}$	$n^{2}+3 n$	2
$\mathbf{C}=\mathbf{A B}+\mathbf{C}$	$2 n^{3}$	$4 n^{2}$	$n / 2$

Matrix-matrix multiplication*

- Suppose there are fast and slow memory. The size of fast memory is $M(\approx 2 n)$, and the size of slow memory is $>3 n^{2}$.
- There loop algorithm for $\mathbf{C}=\mathrm{AB}$

```
for i = 1:n % read row i of A into fast memory
    for j = 1:n % read column j of B into fast memory
        for k = 1:n % read C(i,j) into fast memory
                C(i,j)=C(i,j) + A(i,k)*B(k,j)
        end
    end
end
*Jim Demmel, Applied numerical linear algebra, SIAM 1997
```

- Memory access counts.
- Read B n times: n^{3}.
- Read A 1 time: n^{2}.
- Read and write C 2 times: $2 n^{2}$.
- Total memory access is $n^{3}+3 n^{2}$
- The ratio $q=2 n^{3} /\left(n^{3}+3 n^{2}\right) \approx 2$.
- In the different order of theoretical value $n / 2$.

Block matrix-matrix multiplication

- Partition A, B, and C into $N \times N$ blocks. Each block submatrix is of size n / N. And suppose $M \geq 3(n / N)^{2}$.
- Denote $\mathbf{A}[I, J]$ the I, J block submatrix of \mathbf{A}. Same to \mathbf{B}, \mathbf{C}.

```
for I = 1:N %
    for J = 1:N % read C[I,J] into fast memory
        for K = 1:N % read A[I,K] and B[K,J] into fast memory
            C[I,J]=C[I,J] + A[I,K]*B[K,J]
        end
    end
end
```

- Memory access counts.
- Read B N times: $N n^{2}$.
- Read A N time: $N n^{2}$.
- Read and write C 2 times: $2 n^{2}$.
- Total memory access is $(2 N+2) n^{2} \approx 2 N n^{2}$.
- The optimal N is $n \sqrt{3 / M}$, where M is the size of fast memory. (Let $M=3(n / N)^{2}, N=n \sqrt{3 / M}$.)
- The ratio $q \approx 2 n^{3} /\left(2 N n^{3}\right) \approx \sqrt{M / 3} \approx n / N$.

BLAS/LAPACK

BLAS/LAPACK

- BLAS: Basic Linear Algebra Subprograms
- LAPACK: Linear Algebra PACKage
- The engine of Matlab, Octave and many other high performance software. (Dense and band matrices only.)
- Written in Fortran 77, but also have interfaces to $\mathrm{C},(\mathrm{C}++)$, Java, Fortran 90.
- Similar functions for real and complex matrices, in both single and double precision.

BLAS

- Level 1: vector operations
$-\mathrm{ex}: \mathrm{y}=a \mathrm{x}+\mathrm{y}$
- Level 2: matrix-vector operations
$-\mathrm{ex}: \mathbf{y}=a \mathrm{Ax}+b \mathbf{y}$
- Level 3: matrix-matrix operations

$$
-\mathrm{ex}: \mathbf{C}=a \mathbf{A B}+b \mathbf{C}
$$

LAPACK

- Solving linear equations,
- Least-squares solutions of linear systems of equations,
- Eigenvalue problems, and singular value problems.
- The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur)
- Related computations such as reordering of the Schur factorizations and estimating condition numbers.

Availability

- Official site: http://www.netlib.org/blas/ and http://www.netlib.org/lapack/
- Optimized version: Goto Blas, Altas (Automatically Tuned Linear Algebra Software),
- Commercial packages: Intel MKL, AMD ACML, IBM ESSL, HP MLIB, NVIDIA CUDA, Apple Accelerate ...
- Parallel version are also available.
- Libraries for sparse matrix computation are another story.

