CS 3331 Numerical Methods Introduction to BLAS/LAPACK

Cherung Lee

Outline

- Block algorithms
 - Memory hierarchy
 - Matrix-matrix multiplication
- BLAS/LAPACK

Block Algorithms

Memory hierarchy*

*Jim Demmel's talk at MMDS2008

- Running time
 - Flops*(time per flop)
 - Words moved/bandwidth
 - Messages*latency
- Trend (improvement/year)
 - Time per flop : 59%.
 - Memory BW : 23%
 - Memory latency : 5.5%

Ratio of flops to memory access

- Let f be the number of flops, m be number of memory access. Then q = f/m is the ratio of flops to memory access.
- Let t_{comp} be the time per flops, t_{mem} be the time per memory access. The running time is

$$f \cdot t_{\text{comp}} + m \cdot t_{\text{mem}} = f \cdot t_{\text{comp}} \left(1 + \frac{m \cdot t_{\text{mem}}}{f \cdot t_{\text{comp}}} \right) = f \cdot t_{\text{comp}} \left(1 + \frac{t_{\text{mem}}}{q \cdot t_{\text{comp}}} \right)$$

Operation	f	m	q
$y = \alpha x + y$	2n	3n + 1	2/3
y = Ax + y	$2n^2$	$n^2 + 3n$	2
C = AB + C	$2n^3$	$4n^2$	n/2

Matrix-matrix multiplication*

- Suppose there are fast and slow memory. The size of fast memory is $M(\approx 2n)$, and the size of slow memory is $> 3n^2$.
- \bullet There loop algorithm for $\mathrm{C}=\mathrm{AB}$

```
for i = 1:n  % read row i of A into fast memory
for j = 1:n  % read column j of B into fast memory
for k = 1:n % read C(i,j) into fast memory
        C(i,j)=C(i,j) + A(i,k)*B(k,j)
        end
end
```

end

*Jim Demmel, Applied numerical linear algebra, SIAM 1997

- Memory access counts.
 - Read B n times: n^3 .
 - Read A 1 time: n^2 .
 - Read and write C 2 times: $2n^2$.
- Total memory access is $n^3 + 3n^2$
- The ratio $q = 2n^3/(n^3 + 3n^2) \approx 2$.

- In the different order of theoretical value n/2.

Block matrix-matrix multiplication

- Partition A, B, and C into $N \times N$ blocks. Each block submatrix is of size n/N. And suppose $M \ge 3(n/N)^2$.
- Denote A[I, J] the I, J block submatrix of A. Same to B, C.

```
for I = 1:N %
for J = 1:N % read C[I,J] into fast memory
    for K = 1:N % read A[I,K] and B[K,J] into fast memory
        C[I,J]=C[I,J] + A[I,K]*B[K,J]
        end
    end
end
```

- Memory access counts.
 - Read B N times: Nn^2 .
 - Read A N time: Nn^2 .
 - Read and write C 2 times: $2n^2$.
- Total memory access is $(2N+2)n^2 \approx 2Nn^2$.
- The optimal N is $n\sqrt{3/M}$, where M is the size of fast memory. (Let $M = 3(n/N)^2$, $N = n\sqrt{3/M}$.)

• The ratio
$$q \approx 2n^3/(2Nn^3) \approx \sqrt{M/3} \approx n/N$$
.

BLAS/LAPACK

BLAS/LAPACK

- BLAS: Basic Linear Algebra Subprograms
- LAPACK: Linear Algebra PACKage
- The engine of Matlab, Octave and many other high performance software. (Dense and band matrices only.)
- Written in Fortran 77, but also have interfaces to C, (C++), Java, Fortran 90.
- Similar functions for real and complex matrices, in both single and double precision.

BLAS

• Level 1: vector operations

- ex: y = ax + y

• Level 2: matrix-vector operations

$$-$$
 ex: $y = aAx + by$

• Level 3: matrix-matrix operations

- ex: C = aAB + bC

LAPACK

- Solving linear equations,
- Least-squares solutions of linear systems of equations,
- Eigenvalue problems, and singular value problems.
- The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur)
- Related computations such as reordering of the Schur factorizations and estimating condition numbers.

Availability

• Official site: http://www.netlib.org/blas/ and

http://www.netlib.org/lapack/

- Optimized version: Goto Blas, Altas (Automatically Tuned Linear Algebra Software),
- Commercial packages: Intel MKL, AMD ACML, IBM ESSL, HP MLIB, NVIDIA CUDA, Apple Accelerate ...
- Parallel version are also available.
- Libraries for sparse matrix computation are another story.