Solutions for HW3

(1) Verify the following Sherman-Morrison formula:

$$
\left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}
$$

is valid provided that $1+v^{T} A^{-1} u \neq 0$.
Proof: Suppose that $1+v^{T} A^{-1} u \neq 0$ and $A+u v^{T}$ is invertible, we shall prove that

$$
\left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right)=I, \text { where } I \text { isan } n \times n \text { identity matrix. }
$$

Note that

$$
\begin{aligned}
& \left(A+u v^{T}\right)\left(A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}\right) \\
= & I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}}{1+v^{T} A^{-1} u}-\frac{u v^{T} A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u} \\
= & I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}}{1+v^{T} A^{-1} u}-\frac{u\left(\mathbf{v}^{T} \mathbf{A}^{-1} \mathbf{u}\right) v^{T} A^{-1}}{1+v^{T} A^{-1} u} \\
= & I+u v^{T} A^{-1}-\frac{u v^{T} A^{-1}}{1+v^{T} A^{-1} u}-\frac{\left(\mathbf{v}^{T} \mathbf{A}^{-1} \mathbf{u}\right) u v^{T} A^{-1}}{1+v^{T} A^{-1} u}, \text { since }\left(\mathbf{v}^{\mathbf{T}} \mathbf{A}^{-1} \mathbf{u}\right) \text { is a scalar } \\
= & I+u v^{T} A^{-1}-\frac{1+\left(\mathbf{v}^{T} \mathbf{A}^{-1} \mathbf{u}\right)}{1+v^{T} A^{-1} u} u v^{T} A^{-1} \\
= & I+u v^{T} A^{-1}-u v^{T} A^{-1} \\
= & I
\end{aligned}
$$

(2) I need to read HW2 again today or tomorrow evening, but it shoud not be that hard.

Could you provide me your solution for Problem 6 of HW2?

