
A Framework of Color Image Sharing and Implementation

Based on Number Theory

Chaur-Chin Chen ∗

Institute of Information Systems & Applications
National Tsing Hua University, Hsinchu 30013, Taiwan

E-mail: cchen@cs.nthu.edu.tw

Abstract−Image Sharing is a technique based
on secret message sharing. This technical re-
port discusses 3 image sharing techniques based
on (1) Shamir [5], (2) Blakley [2], (3) Chi-
nese Remainder Theorem (CRT) [10] which are
all based on modular arithmetics of Number
Theory. We provide algorithmic approaches
with Matlab/C programs for implementations
of (k,n)=(4,6)-threshold examples.

Index Terms−Blakley, Chinese Remainder Theorem
(CRT), Image Sharing, Shamir.

1. INTRODUCTION

Most of the contemporary image sharing techniques
rely on one of the three secret sharing strategies mi-
grated from cryptography, including

(1) Shamir strategy [5, 8] which is based on the concept
that a plane polynomial curve of degree k-1 can be
uniquely constructed if there are at least k distinct
points of the curve are provided. The strategy is
processed under modular arithmetic computations.

(2) Blakley strategy [2, 3] is based on the concept that
seeking a unique intersecting point, given at least
k designated nonparalell planes in a k-dimensional
vector space.

(3) The strategy of image sharing based on Chinese re-
mainder theorem (CRT) [1, 6, 7, 10, 11] is to des-
ignate a set of simultaneous congruence equations
to distribute the information (integers) from each
individual pixel into participants such that a secret
image can be revealed pixel by pixel by collecting
at least k information out of n participants.

∗This work is supported by Taiwan MOST Grant 104-2221-
E-007-096-MY2

The experiments of the aforementioned approaches
only show the limited results of small 2 ≤ k < n ≤ 5.
The issues of computation and implementation under
contemporary computers are ignorant or not even men-
tioned. This report aims to tackle the above short-
age. We shall report experimental results of (k, n) =
(4, 6)− threshold techniques by using Matlab program-
ming with the Matlab codes being listed. The parame-
ters will also be explicitly released. In other words, the
user-friendly Matlab codes for color image sharing and
recovering will be reported.

2. SHARING and RECOVERING
ALGORITHMS

2.1. Shamir-Based Method [5, 8]

(A) Image sharing algorithm (over n participants)

(1*) Randomly shuffle the pixels of the secret image
and pick up a k < n, for example, k = 4, n = 6 in
the implementations through this report.

(2) Let p = 251, the largest prime less than 255, and
suppress all pixels whose gray values larger than
250 to 250.

(3) Sequentially take k pixels of the image which have
not been used whose corresponding intensity val-
ues are g0, g1, · · · , gk−1 to establish a polynomial of
degree k − 1 under modular p operations as

f(x) = g0+g1x+g2x
2+· · ·+gk−1x

k−1 mod p (1)

Then,
generate n pixel values f(x1), f(x2), · · · , f(xn) to
distribute for the same location of the n shadow
images, where 1 ≤ x1 < x2 < · · · < xn ≤ 250.

(4) Repeat step (3) until all pixels of the image are
processed.



Note that step (1) is applied to avoid the information
of the secret image, for example, the shape, being ex-
posed. This step is sometimes not necessary and could
be ignored.

(B) Image recovering algorithm

(1) Collect any k out of n shadow images.

(2) Take the first unused pixel (usually the top-
leftmost one), from each of the k shadow images,
say, y1, y2, · · · yk,

(3) Use these {y′
ks} pixels and the corresponding as-

signed values x1, x2, · · · xk for the k collected
shadows to recover the corresponding pixel values
g0, g1, · · · gk−1 of the original image by solving
the following linear system of equations with the
coefficient matrix being a k × k Vandermonde ma-
trix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 · · · xk−1
1

1 x2 · · · xk−1
2

...
...

...
...

1 xk · · · xk−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

...

gk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

(4) Repeat steps (2) and (3) until all pixels of the k
shadow images have been processed.

(5*) Inversely permute the pixels of the permuted im-
age to recover the original image if step (1) was
applied in the sharing process.

2.2. Blakley Geometry-Based Approach [2]

(A) Image sharing algorithm (over n participants)

(1) Let p = 251, sequentially take k pixels of the image
which have not been used, whose corresponding
intensity values are g0, g1, · · · , gk−1, to establish a
linear equation (hyperplane) under modular p op-
erations as

x
(i)
1 g1 + x

(i)
2 + · · · + x

(i)
k gk = b(i) mod p (3)

where {x(i)
j , b(i) | 1 ≤ j ≤ k, 1 ≤ i ≤ n}

could be randomly assigned as long as the ma-
trix whose elements chosen from the coefficients of
{x(τ(i))

j , 1 ≤ j ≤ k, τ(i) ∈ {1, 2, · · · , n}} is nonsin-
gular. Each of the constant terms b(i), 1 ≤ i ≤ n
could be treated as a corresponding pixel value of
the i − th shadow image.

(2) Repeat step (1) until all pixels of the image are
processed.

Note that if we assign the coefficients {x(i)
j , 1 ≤ j ≤

k, 1 ≤ i ≤ n} as {1, xh, x2
h, · · · , x(k−1)

h | 1 ≤ h ≤ n},
the Blakley is nothing but a Shamir-Based method. Al-
though Blakley’s approach could be viewed as an exten-
tion of Shamir-Based method, its computations take
much longer time and may not be so practical.

(B) Image recovering algorithm

The reconstruction is nothing but solving a sequence of
k linear equations of k variables which are picked from
the pixel values of the original image.

2.3. Image Sharing Based on Chinese Remain-
der Theorem

The Chinese remainder theorem (CRT) [7] is issued
to solve a set of simultaneous congruence equations
which can be stated as follows. Let m1, m2, · · · , mk

be pairwise coprime positive integers, given nonnega-
tive integers a1, a2, · · · , ak, there exists exactly one so-
lution x ∈ [0, m1m2 · · ·mk) for the following simultane-
ous congruence equations

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

(4)

The solution can be obtained by performing the fol-
lowing procedure (CRT).

(1) Denote M =
∏k

i=1 mi and let zi = M/mi for 1 ≤
i ≤ k.

(2) Solve yi for yizi ≡ 1 (mod mi) for 1 ≤ i ≤ k.

(3) Let x ≡ (a1y1z1 + a2y2z2 + · · ·+ akykzk) mod M .

(4) Since x ≡ ai (mod mi) ∀ 1 ≤ i ≤ k, so is the
unique solution.

For example, x = 39 (mod 2 · 5 · 7) is the solution for
the following congruence equations.

x ≡ 1 (mod 2)

x ≡ 4 (mod 5)

x ≡ 4 (mod 7)

(5)

2



Based on the Chinese remainder theorem (CRT),
Mignotte [11], Asmuth and Bloom [1], Shyu [6], Ulutas
et al. [10], Tsai and Chen [9] proposed different imple-
mentation methods for solving data and image sharing
schemes which are reviewed as follows.

2.3.1. Mignotte Sharing Scheme [11]
Mignotte’s sharing scheme uses special Mignotte se-

quences of positive integers. Let k, n be positive inte-
gers such that 2 ≤ k ≤ n, A Mignotte sequence is a
sequence of positive integers 2 ≤ m1 < m2 < · · · < mn

such that gcd(mi, mj) = 1, for 1 ≤ i < j ≤ n where
m1m2 · · ·mk > mn−k+2mn−k+3 · · ·mn.

Mignotte threshold secret sharing scheme can be
stated as follows.

(1) Let a secret integer S ∈ (α, β), where α =
mn−k+2mn−k+3 · · · × mn and β = m1m2 · · ·mk.

(2) The share ai is chosen by computing as ai ≡
S mod mi for 1 ≤ i ≤ n.

(3) Collecting at least k distinct shares a′
is, the secret

S could be revealed by using CRT.

One of the disadvantages for this scheme is that the
same secret image pixel values will always be encoded as
the same value in a shadow image. Asmuth and Bloom
[1] has proposed a method to improve this drawback
which is adopted by various researches [6, 10, 9] for the
implementation of image sharing and recovering which
are reviewed as follows.

2.3.2. Asmuth and Bloom Based Sharing
Scheme [1]

Based on the idea of Asmuth and Bloom for data
sharing, Shyu and Chen [6] extended the sharing
scheme proposed by Mignotte to devise a threshold im-
age sharing scheme which uses a pseudo random num-
ber generator (PRNG) with a seed to ensure that the
same pixel value is not necessarily encoded as the same
number. However, the implementation becomes some-
what tedious and complicated becasue the correspond-
ing number acquired by PRNG of each pixel should be
recorded. Ulutas et al. [10] proposed a method to drop
the PRNG recording numbers for pixels. The sharing
and revealing procedures by Ulutas et al. [10] can be
summarized as follows.

(A) A Sharing Procdure

(1) Pick up a set of inteters {0 < m0 < m1 < · · · <
mn < 257} subject to

(a) gcd(mi, mj) = 1 for 0 ≤ i < j ≤ n.

(b) L = m0 ·
∏k−1

i=1 mn+1−i < M =
∏k

i=1 mi.

(2) Specify an integer T ∈ (low, high) where low =
� L

m0
� and high = � M

m0�, and sequentially take a
pixel value p from the secret image and do the
following tasks according to a lexicographic order.

(a) If p < m0, compute

y = p + α · m0 (6)

where α is an integer randomly picked up from
[(T + 1), M ].

(b) If p ≥ m0, compute

y = (p − m0) + β · m0 (7)

where β ∈ [0, T ] is randomly picked up.

(3) Compute

yi ≡ y mod mi for i = 1, 2, · · · , n (8)

where yi is the corresponding pixel value in the
i − th shadow image for 1 ≤ i ≤ n.

(4) Repeat steps (2) and (3) until all pixels of the secret
image are processed. The integer mi associated
with the i − th shadow image is preserved by the
i − th participant.

(B) The Recovering Procdure

(1) Collect any k shadow images. Sequentially take the
first unused pixel ai from the i− th shadow image.

(2) Apply the Chinese remainder theorem to solve the
following simultaneous equations.

y ≡ a1 (mod m1)

y ≡ a2 (mod m2)

...

y ≡ ak (mod mk)

(9)

(3) Compute the random parameter γ, that is, α or β
in the sharing procedure by

γ = � y

m0
� (10)

The corresponding pixel value of the secret im-
age is y mod m0 if γ > T , otherwise, m0 +
(y mod m0) if γ ≤ T .

3



(4) Repeat steps (1∼3) until all of the pixels are re-
vealed.

Note that the random integers α and β are not re-
quired in the revealing procedure which improves the
work implemented by Shyu and Chen [6]. However,
a user-specified threshold integer T must be provided
during sharing and revealing procedures.

3. A PROPOSED IMAGE SHARING
ALGORITHM BASED ON CRT [4]

We extend the sharing scheme proposed by Ulutas in
2009 based upon Chinese Remainder Theorem (CRT)
to designate a (k,n)-threshold secret sharing scheme for
digital RGB-color images in a TIFF image file format.
In the experiments of this report, we consider each
of R,G,B images is shared by using the same sharing
method though other sharing strategies could be used.
To meet the restrictions of CRT and the pixel range is
in [0,255], we store the least significant bits of R,G,B
parts in a file without being shared. The most signifi-
cant 7 bits are right shifted in one position.

(A) A Proposed Sharing Algorithm

(1) Select a set of integers {m0, m1, m2, · · · , mn} which
satisfies m0 = 128 < m1 < m2 < · · · < mn ≤ 255}
and meets the following two requirements.

(a) gcd(mi, mj) = 1 for 0 ≤ i < j ≤ n.

(b) L = m0 ·
∏k−1

i=1 mn+1−i < M =
∏k

i=1 mi.

(2) Each pixel value xh of r,g,b signals, respectively is
computed according to the following equation

yh = (xh >> 1) + α · m0, where h = r, g, or b

As mentioned before, the least significant bits of

pixels are stored separately, and α ∈ (0, � M
m0

�) is
a randomly generated integer. The purpose to use
α is to avoid that the same value is converted into
the identical value in a shadow image, whereas, α
is not required during a recovering procedure.

(3) We distribute a shadow pixel value for each partici-
pant according to the following modular arithmetic
from each yh value obtained above.

r
(p)
i ≡ yr mod mi

g
(p)
i ≡ yg mod mi for i = 1, 2, · · · , n

b
(p)
i ≡ yb mod mi

(11)

Note that a color pixel p in the i−th shadow image
is recorded as [r(p)

i , g
(p)
i , b

(p)
i ].

(4) Repeat steps (2) and (3) until all of the color pix-
els {(yr, yg, yb)} of the secret image are processed,
then mi is associated with the i− th shadow image
is kept by the i− th participant for i = 1, 2, · · · , n.

(B) The Recovering Algorithm

(1) Collect at least k shadow images associated with k
m′

js, say, m1, m2, · · · , mk without loss of general-
ity.

(2) Sequentially, take the first pixel, say, w, from each
of the k shadow images. We use the k values of
{r(w)

i |i = 1, 2, · · · , k} and the Chinese Remainder
Theorem (CRT) to resolve y

(w)
r , the similar action

is applied to resolve y
(w)
g and y

(w)
b , respectively.

(3) We reverse the sharing process to reveal the pixel
values by

xh = ((yh mod m0) << 1) + t
(w)
h , h = r, g, or b

where t
(w)
h is the least significant bit value (either

0 or 1) pre-stored before processing image sharing.

(4) Repeat steps (2) and (3) until all pixels of k shadow
images are processed.

If an approximate secret image could be accepted,
the pre-stored least significant bits could be ignored and
can be randomly generated during a recovering process.

4. EXPERIMENTS

We demonstrate the experimental results of (k, n) =
(4, 6) for CRT-based and Shamir-based methods and
list the Matlab codes for each method [14].

4.1. Experimental Results By CRT-Based
Method

Chuang et al. [4] have reported experimental re-
sults implemented in a Linux-based system on a
(k, n) = (3, 5)-threshold method [12] with the pa-
rameters m0 = 128 and (m1, m2, m3, m4, m5) =
(247, 251, 253, 254, 255) being selected so that each pixel
value in shadow images randomly lie in the range
[0,255) although the first shadow image may only con-
tain pixel values in the range [0,247), all of the five
shadow images look like noise without leaking any infor-
mation of the secret image. A color image ”Peppers” for

4



sharing and recovering is demonstrated that the shadow
images associated with (m3, m4, m5) = (253, 254, 255)
were used to exactly reveal the original image in the
paper [4].

This report extends (k, n) = (3, 5) to (k, n) = (4, 6)
by choosing the parameters m0 = 128 and m1 = 241,
m2 = 247, m3 = 251, m4 = 253, m5 = 254,
m6 = 255. For (k, n) = (4, 6, one immediately en-
counters a problem of over 32-bit integer multiplica-
tion computations. We exploit some Matlab built-in
function such as uint64 to overcome this problem.
The color image ”Lenna” for sharing and recovering is
demonstrated that the shadow images associated with
(m1, m2, m3, m4) = (241, 247, 251, 253)were used to ex-
actly reveal the original image as shown in the following
figures. The elapsed time for sharing and recovering in
a (k, n) = (4, 6)-threshold which is run with a Mat-
lab version 2011b requires approximately 18 seconds.
Matlab Codes can be accessed via [12].

Secret m
1
=241 m

2
=247

m
3
=251 m

4
=253 m

5
=254

m
6
=255

0 100 200
0.3

0.4

0.5

Histogram of Shadow 6

P
er

ce
nt

ag
e

Recovered Image

Figure 1: CRT Shadow Images and Reconstruction.

4.2. Experimental Results By Shamir-Based
Method

Thien and Lin [8] reported experimental results for
(k, n) = (2, 4)-threshold bsed on the Shamir polynomial
interpolation. We extend the similar work for (k, n) =
(4, 6) and tackle the problem by computing the inverse
of a 4 × 4 Vandermonde matrix under the modular
p=251 arithmetics. The (m1, m2, m3, m4, m5, m6) =
(37, 60, 101, 149, 203, 246) are randomly generated from
[2,250]. The color image ”Mandrill” for sharing and re-
covering is demonstrated that the shadow images as-
sociated with (m3, m4, m5, m6) = (101, 149, 203, 246)
were used to exactly reveal the original image as shown
in the following figures.

The elapsed time for sharing and recovering in a
(k, n) = (4, 6)-threshold which is run with a Matlab
version 2011b requires approximately 2 seconds. Mat-
lab Codes can be accessed via [13].

Secret Image x
1
=37 x

2
=60 x

3
=101

x
4
=149 x

5
=203 x

6
=246 Recovering by Shadows 1∼4

Figure 2: Shamir Shadow Images and Reconstruction.

5. DISCUSSION AND CONCLUSION

This report reviews and discusses commonly used
(k, n) threshold methods including Shamir [5, 8], Blak-
ley [2, 3], and CRT-Based methods [1, 10, 11] for im-
age sharing and recovering. Generally speaking, a pixel
value falls in [0,255] which should be taken into account
in the design for image sharing, based on which, we pro-
posed a simple CRT-based method to implement an im-
age sharing and recovering processes for (k, n) = (3, 5)
[4, 12]. Due to the computations for large integers such
as those over 32-bit or 231 − 1 representations, the ex-
periments for (k, n) = (4, 6) have not been reported yet.
This report demonstrates the results of sharing and re-
covering of (k, n) = (4, 6)-threshold methods based on
Chinese Remainder Theorem and Shamir polynomial
interpolation by using simple Matlab codes. The ex-
tension for even larger (k, n) or other methods merits
further studies.

References

[1] C. Asmuth and J. Bloom, ”A Modular Approach
to Key Guarding,” IEEE Trans. on Information
Theory, vol. 29, no. 2, 208-210, 1983.

[2] G.R. Blakley, ”Safeguarding cryptographic keys,”
Proceedings of the National Computer Conference,
American Federation of Information Proceeding
Societies, New York, vol. 48, 313-317, 1979.

5



[3] C. Chen, W.Y. Fu, and C.C. Chen, ”A Geometry-
Based Image Sharing Approach,” Proceedings of
Image and Vision Computing, Dunedin, Otago,
New Zealand, 428-431, 2005.

[4] T.C. Chuang, C.C. Chen, and B. Chien, ”Im-
age Sharing and Recovering Based on Chinese Re-
mainder Theorem,” IEEE International Confer-
ence on Computer, Consumer, and Control, 817-
820, Xi’an, China, July 4-6, 2016.

[5] A. Shamir, ”How to share a secret?”, Communica-
tions of the ACM, vol. 22, no. 11, 612-613, 1979.

[6] S.J. Shyu and Y.R. Chen, ”Threshold Secret Im-
age Sharing by Chinese Remainder Theorem,”
IEEE Asia-Pacific Services Computing Confer-
ence, 1332-1337, Yilan, Taiwan, Dec. 9-12, 2008.

[7] D.R. Stinson, ”Cryptography: Theory and Prac-
tice,” Champman & Hall / CRC Press, 2006.

[8] C.C. Thien and J.C. Lin, ”Secret image sharing,”
Compuers & Graphics, vol. 26, no. 1, 765-771,
2002.

[9] M.H. Tsai and C.C. Chen, ”A Study on Secret Im-
age Sharing,” The Sixth International Workshop
on Image Media Quality and Its Applications, 135-
139, Tokyo, Japan, September 12-13, 2013.

[10] M. Ulutas, V.V. Nabiyev, and G. Ulutas, ”A
New Secret Sharing Technique Based on Asmuth
Bloom’s Scheme,” IEEE International Conference
on Application of Information and Communication
Technologies, 1-5, Baku, Oct. 14-16, 2009.

[11] https://en.wikipedia.org/wiki/ Se-
cret sharing using the Chinese remainder theorem,
last access on July 31, 2016.

[12] http://www.cs.nthu.edu.tw/.WWW/CRT2016,
last access on July 31, 2017.

[13] http://www.cs.nthu.edu.tw/.WWW/Shamir2017,
last access on July 31, 2017.

[14] http://www.cs.nthu.edu.tw/.WWW/NSC2017,
last access on July 31, 2017.

6



Matlab Codes for CRT Sharing and Recovering

%% crtNSC.m - CRT-Based (k,n)-threshold sharing and recovering

% Elapsed time = 17.2 seconds in PC/XP running Matlab 2011a version

% (1) Read an RGB-based input image in Tiff format, e.g., Lenna.tiff

%

m=512; n=512;

I=imread(’Lenna.tiff’); IC=I;

R=I(:,:,1); G=I(:,:,2); B=I(:,:,3);

% for reconstruction

R0=zeros(m,n,’uint8’); G0=zeros(m,n,’uint8’); B0=zeros(m,n,’uint8’);

%

% (2) Image Sharing - generate 6 Shadows for (4,6)-threshold method

%

Shadow=imread(’Peppers.tiff’); % Image size used for reconstruction

R1=zeros(m,n,’uint8’); R2=R1; R3=R1; R4=R1; R5=R1; R6=R1;

G1=zeros(m,n,’uint8’); G2=G1; G3=G1; G4=G1; G5=G1; G6=G1;

B1=zeros(m,n,’uint8’); B2=B1; B3=B1; B4=B1; B5=B1; B6=B1;

%

% (2a) Shift 1 bit to the right for (R,G,B) while

% preserving the least significant bits

for i=1:m

for j=1:n

r0=bitget(R(i,j),1);

g0=bitget(G(i,j),1);

b0=bitget(B(i,j),1);

R(i,j)=(R(i,j)-r0)/2; R0(i,j)=r0;

G(i,j)=(G(i,j)-g0)/2; G0(i,j)=g0;

B(i,j)=(B(i,j)-b0)/2; B0(i,j)=b0;

end

end

%

% (3) Compute the 6 shadow images

%

m0=uint32(128); S=uint32([241, 247, 251, 253, 254, 255]);

Low=uint32(m0*S(4)*S(5)*S(6)); Up=uint32(S(1)*S(2)*S(3)*S(4));

Lb=round(Low/m0+2); Ub=round(Up/m0-3);

Rarray=uint32(randi([Lb, Ub],m,n));

y=uint32(1);

for i=1:m

for j=1:n

r=R(i,j); g=G(i,j); b=B(i,j); t=Rarray(i,j);

y=t*m0+uint32(r);

7



R1(i,j)=mod(y,S(1)); R2(i,j)=mod(y,S(2)); R3(i,j)=mod(y,S(3));

R4(i,j)=mod(y,S(4)); R5(i,j)=mod(y,S(5)); R6(i,j)=mod(y,S(6));

y=t*m0+uint32(g);

G1(i,j)=mod(y,S(1)); G2(i,j)=mod(y,S(2)); G3(i,j)=mod(y,S(3));

G4(i,j)=mod(y,S(4)); G5(i,j)=mod(y,S(5)); G6(i,j)=mod(y,S(6));

y=t*m0+uint32(b);

B1(i,j)=mod(y,S(1)); B2(i,j)=mod(y,S(2)); B3(i,j)=mod(y,S(3));

B4(i,j)=mod(y,S(4)); B5(i,j)=mod(y,S(5)); B6(i,j)=mod(y,S(6));

end

end

%

% (4) Print the color input image and its Shadow Color Images

%

S1=Shadow; S2=Shadow; S3=Shadow; S4=Shadow; S5=Shadow; S6=Shadow;

S1(:,:,1)=R1; S1(:,:,2)=G1; S1(:,:,3)=B1; % S1: Color Shadow 1

S2(:,:,1)=R2; S2(:,:,2)=G2; S2(:,:,3)=B2; % S2: Color Sahdow 2

S3(:,:,1)=R3; S3(:,:,2)=G3; S3(:,:,3)=B3; % S3: Color Shadow 3

S4(:,:,1)=R4; S4(:,:,2)=G4; S4(:,:,3)=B4; % S4: Color Shadow 4

S5(:,:,1)=R5; S5(:,:,2)=G5; S5(:,:,3)=B5; % S5: Color Shadow 5

S6(:,:,1)=R6; S6(:,:,2)=G6; S6(:,:,3)=B6; % S5: Color Shadow 6

subplot(3,3,1)

imshow(I)

xlabel(’Secret’)

subplot(3,3,2)

imshow(S1)

xlabel(’m_1=241’)

subplot(3,3,3)

imshow(S2)

xlabel(’m_2=247’)

subplot(3,3,4)

imshow(S3)

xlabel(’m_3=251’)

subplot(3,3,5)

imshow(S4)

xlabel(’m_4=253’)

subplot(3,3,6)

imshow(S5)

xlabel(’m_5=254’)

subplot(3,3,7)

imshow(S6)

xlabel(’m_6=255’)

imwrite(S1,’shadow1.tif’); imwrite(S2,’shadow2.tif’);

imwrite(S3,’shadow3.tif’); imwrite(S4,’shadow4.tif’);

imwrite(S5,’shadow5.tif’); imwrite(S6,’shadow6.tif’);

8



%

% (5) Recovering - from S3~S6 Shadow images to solve the CRT problem

%

% Z=uint64([S(2)*S(3)*S(4),S(1)*S(3)*S(4),S(1)*S(2)*S(4),S(1)*S(2)*S(3)]);

% Y=[80, 12, 204, 65];

%

M=uint64(S(3)*S(4)*S(5)*S(6));

Z=uint64([S(4)*S(5)*S(6),S(3)*S(5)*S(6), S(3)*S(4)*S(6),S(3)*S(4)*S(5)]);

Y=uint64([136, 63, 85, 223]);

A=uint64([255, 255, 255, 255]);

u=uint64(0); s=uint64(1);

m0=uint64(128);

for i=1:m

for j=1:n

A=uint64([(R3(i,j)), R4(i,j), R5(i,j), R6(i,j)]);

s=sum(A.*(Y.*Z));

s=mod(s,M);

R(i,j)=mod(s,m0);

A=uint64([(G3(i,j)), G4(i,j), G5(i,j), G6(i,j)]);

s=sum(A.*(Y.*Z));

s=mod(s,M);

G(i,j)=mod(s,m0);

A=uint64([B3(i,j), B4(i,j), B5(i,j), B6(i,j)]);

s=sum(A.*(Y.*Z));

s=mod(s,M);

B(i,j)=mod(s,m0);

end

end

%

% (6) Print histogram of shadow image 6

%

hr=zeros(256); hg=zeros(256); hb=zeros(256);

for i=1:m

for j=1:n

k=R6(i,j)+1; hr(k)=hr(k)+1;

k=G6(i,j)+1; hg(k)=hg(k)+1;

k=B6(i,j)+1; hb(k)=hb(k)+1;

end

end

for k=1:256

hr(k)=100.0*hr(k)/(m*n);

hg(k)=100.0*hg(k)/(m*n);

hb(k)=100.0*hb(k)/(m*n);

end

9



subplot(3,3,8)

L=0:255;

plot(L,hr,’r-’,L,hg,’g-’,L,hb,’b-’); axis([0,256,0.3,0.5])

xlabel(’Histogram of Shadow 6’)

ylabel(’Percentage’)

%

% (7) IC holds a perfect revealed image

%

for i=1:m

for j=1:n

R0(i,j)=R0(i,j)+2*R(i,j);

G0(i,j)=G0(i,j)+2*G(i,j);

B0(i,j)=B0(i,j)+2*B(i,j);

end

end

IC(:,:,1)=R0; IC(:,:,2)=G0; IC(:,:,3)=B0; imwrite(IC,’tRecov.tif’);

subplot(3,3,9)

imshow(IC)

xlabel(’Recovered Image’)

%title(’Reconstruction by Shadows 3\sim6’)

10



Secret m
1
=241 m

2
=247

m
3
=251 m

4
=253 m

5
=254

m
6
=255

0 100 200
0.3

0.4

0.5

Histogram of Shadow 6

P
er

ce
nt

ag
e

Recovered Image

Figure 1: CRT Shadows and Reconstruction for Peppers.

11



Matlab Codes for Shamir Sharing and Recovering

%% shamirNSC.m - Shamir (4,6)-threshold sharing and recovering

% The Elapsed time ~ 2 seconds for sharing and recovering

% (1) Read an RGB-based input image in Tiff format, e.g., Lenna.tiff

%

m=512; n=512; np=m*n; m2=m/2; n2=n/2;

I=imread(’Mandrill.tiff’); IC=I;

R=I(:,:,1); G=I(:,:,2); B=I(:,:,3);

R0=zeros(m,n); G0=zeros(m,n); B0=zeros(m,n); % for reconstruction

%

% (2) Establish the table of ax=1 mod p=251; x*f(x)=1 mod p=251

%

p=251;

sinv=zeros(1,256);

for i=1:p-1

s=i; k=1;

while (k<p)

if (mod(s*k,p)==1)

sinv(i)=k; k=p;

else

k=k+1;

end

end

end

%

% (3) Image Sharing - generate 6 Shadows for (4,6)-threshold mod p=251

%

Shadow=imread(’color256.tif’); % (m2*n2)*3 size for shadows 1~6

R1=zeros(m2,n2); R2=R1; R3=R1; R4=R1; R5=R1; R6=zeros(m2,n2);

G1=zeros(m2,n2); G2=G1; G3=G1; G4=G1; G5=G1; G6=zeros(m2,n2);

B1=zeros(m2,n2); B2=B1; B3=B1; B4=B1; B5=B1; B6=zeros(m2,n2);

%

% (4) Prepare a perfect recovering

%

for i=1:m

for j=1:n

if (R(i,j)>250) R0(i,j)=R(i,j)-250; R(i,j)=250; end

if (G(i,j)>250) G0(i,j)=G(i,j)-250; G(i,j)=250; end

if (B(i,j)>250) B0(i,j)=B(i,j)-250; B(i,j)=250; end

end

end

%

12



% (4) Compute the shadow images

%

r=zeros(1,4); g=zeros(1,4); b=zeros(1,4);

v=round(250*rand(1,6));

v=sort(v);

v=[37,60,101,149,203,246]; % specified {m_i} for an example only

v2=mod(v.^2,p); v3=mod(v.^3,p);

AX=[1,1,1,1,1,1; v; v2; v3];

for i=0:2:m-2

ix=1+i/2;

for j=0:2:n-2

jy=1+j/2;

r(1)=R(i+1,j+1); r(2)=R(i+1,j+2); r(3)=R(i+2,j+1); r(4)=R(i+2,j+2);

yr=mod(r*AX,p);

R1(ix,jy)=yr(1); R2(ix,jy)=yr(2); R3(ix,jy)=yr(3);

R4(ix,jy)=yr(4); R5(ix,jy)=yr(5); R6(ix,jy)=yr(6);

g(1)=G(i+1,j+1); g(2)=G(i+1,j+2); g(3)=G(i+2,j+1); g(4)=G(i+2,j+2);

yg=mod(g*AX,p);

G1(ix,jy)=yg(1); G2(ix,jy)=yg(2); G3(ix,jy)=yg(3);

G4(ix,jy)=yg(4); G5(ix,jy)=yg(5); G6(ix,jy)=yg(6);

b(1)=B(i+1,j+1); b(2)=B(i+1,j+2); b(3)=B(i+2,j+1); b(4)=B(i+2,j+2);

yb=mod(b*AX,p);

B1(ix,jy)=yb(1); B2(ix,jy)=yb(2); B3(ix,jy)=yb(3);

B4(ix,jy)=yb(4); B5(ix,jy)=yb(5); B6(ix,jy)=yb(6);

end

end

%

% (5) Print the color input image and its Shadow Color Images

%

S1=Shadow; S2=Shadow; S3=Shadow; S4=Shadow; S5=Shadow; S6=Shadow;

S1(:,:,1)=R1; S1(:,:,2)=G1; S1(:,:,3)=B1; % S1: Color Shadow 1

S2(:,:,1)=R2; S2(:,:,2)=G2; S2(:,:,3)=B2; % S2: Color Sahdow 2

S3(:,:,1)=R3; S3(:,:,2)=G3; S3(:,:,3)=B3; % S3: Color Shadow 3

S4(:,:,1)=R4; S4(:,:,2)=G4; S4(:,:,3)=B4; % S4: Color Shadow 4

S5(:,:,1)=R5; S5(:,:,2)=G5; S5(:,:,3)=B5; % S5: Color Shadow 5

S6(:,:,1)=R6; S6(:,:,2)=G6; S6(:,:,3)=B6; % S5: Color Shadow 6

subplot(2,4,1)

imshow(I)

xlabel(’Secret Image’)

subplot(2,4,2)

imshow(S1)

xlabel(’x_1=37’)

subplot(2,4,3)

imshow(S2)

13



xlabel(’x_2=60’)

subplot(2,4,4)

imshow(S3)

xlabel(’x_3=101’)

subplot(2,4,5)

imshow(S4)

xlabel(’x_4=149’)

subplot(2,4,6)

imshow(S5)

xlabel(’x_5=203’)

subplot(2,4,7)

imshow(S6)

xlabel(’x_6=246’)

%

% (6) Recovering - from S1~S4 Shadow images with v(1~4), respectively

% The inverse matrix computation may require some preprocessing

%

u=v(1,1:4);

u2=mod(u.^2,p); u3=mod(u.^3,p);

A=[1,1,1,1; u; u2; u3];

ti=mod(round(det(A)),p);

if (ti<0) t=ti+p; else t=ti; end;

s=sinv(t);

C=mod(s*adj(A),p); y=zeros(1,4);

for ix=1:m2

i=2*(ix-1);

for jy=1:n2

j=2*(jy-1);

y(1)=R1(ix,jy); y(2)=R2(ix,jy); y(3)=R3(ix,jy); y(4)=R4(ix,jy);

r=mod(y*C,p);

R(i+1,j+1)=r(1); R(i+1,j+2)=r(2); R(i+2,j+1)=r(3); R(i+2,j+2)=r(4);

y(1)=G1(ix,jy); y(2)=G2(ix,jy); y(3)=G3(ix,jy); y(4)=G4(ix,jy);

g=mod(y*C,p);

G(i+1,j+1)=g(1); G(i+1,j+2)=g(2); G(i+2,j+1)=g(3); G(i+2,j+2)=g(4);

y(1)=B1(ix,jy); y(2)=B2(ix,jy); y(3)=B3(ix,jy); y(4)=B4(ix,jy);

b=mod(y*C,p);

B(i+1,j+1)=b(1); B(i+1,j+2)=b(2); B(i+2,j+1)=b(3); B(i+2,j+2)=b(4);

end

end

%

% (7) Histogram of Shadow Image 6

%

hr=zeros(250); hg=zeros(250); hb=zeros(250);

for i=1:m2

14



for j=1:n2

k=R6(i,j)+1; hr(k)=hr(k)+1;

k=G6(i,j)+1; hg(k)=hg(k)+1;

k=B6(i,j)+1; hb(k)=hb(k)+1;

end

end

for k=1:250

% hr(k)=100.0*hr(k)/(m2*n2);

% hg(k)=100.0*hg(k)/(m2*n2);

% hb(k)=100.0*hb(k)/(m2*n2);

end

% subplot(3,3,8)

% L=0:249;

% plot(L,hr,’r-’,L,hg,’g-’,L,hb,’b-’)

% xlabel(’Histogram of Shadow 6’)

% (’No. of Pixels’)

%

% (8) IC holds a perfect revealed image

%

for i=1:m

for j=1:n

R0(i,j)=R0(i,j)+mod(R(i,j),p);

G0(i,j)=G0(i,j)+mod(G(i,j),p);

B0(i,j)=B0(i,j)+mod(B(i,j),p);

end

end

IC(:,:,1)=R0; IC(:,:,2)=G0; IC(:,:,3)=B0; imwrite(IC,’tRecov.tif’);

subplot(2,4,8)

imshow(IC)

xlabel(’Recovering by Shadows 1\sim4’)

15



Secret Image x
1
=37 x

2
=60 x

3
=101

x
4
=149 x

5
=203 x

6
=246 Recovering by Shadows 1∼4

Figure 2: Shamir Shadows and Reconstruction for Peppers.

16


	y323
	Appendix

