

A STEGANOGRAPHIC METHOD USING MRF-
SYNTHESIZED TEXTURES AS COVER IMAGES

Feng-Ju Chang and Chaur-Chin Chen

Institute of Information Systems and Applications, National Tsing Hua University,
Hsinchu 30013, Taiwan

Abstract
We adopt a grayscale statistical texture synthesizer based on MRF to generate an image of user-requested size to
fit the secret message. Each of our synthesized texture images as cover images contains four gray values: 30, 100,
170, and 240. We encrypt secret messages via exponent and modulo operations. Then we partition the encrypted
bit sequence of the secret message as many of 2-bit words: 00, 01, 10 and 11, thus each 2-bit word naturally
corresponds to one of the four gray values 30, 100, 170 and 240. To be more secure, we adopt a circular shift
technique on (30, 100, 170, 240) such that the same 2-bit words need not be embedded into the same pixel values
and the security could be further ensured. Experiments are given to demonstrate our approach.

Keywords: Markov Random Field (MRF), Steganography, Texture

1 Introduction
Steganography [12] is a popular topic for scholars
since Internet becomes the most common way of
communication. It forces people to establish a passive
attitude of protecting data with high security to avoid
being victims. The most important requirement of
steganography is undetectability; the concealed
messages should be perfectly disguised under all
statistical and visual analysis [5, 8, 11].

Since we discuss steganography on images, if images
are always acquired from Internet, there is a problem
that the length of message would be limited by the
image size [1, 6]. To overcome this problem, a
grayscale statistical texture synthesizer based on
Markov random field (MRF) [1, 2, 3] is adopted such
that we can synthesize the designated size of image
needed.

Reversible data hiding [7] which ensures that after
extracting the messages the image could preserve its
primordial pattern. It takes the pixels with peak value
in the histogram as targets for embedding. This paper
uses a cover image of user-selected size and we want
to develop a steganographic method based on the
ideas of reversible data hiding algorithm and quantum
cryptography [10] that every quantum would be
affected by other quanta with a unique relationship
respectively to increase the security. For the
encryption method, we shall adopt the exponent and
modulus computations [4, 9]. Figure 1 depicts our
scheme.

Figure 1. A paradigm of data hiding scheme.

2 Background Review

2.1 Texture Synthesis Based on Markov
Random Field

Markov Random Field [2, 3] is a Gibbs random field
which represents a dependent relationship of the
pixels within the defined neighborhood. Taking
advantage of properties of MRF to synthesize a
meaningful texture, we define the renewed probability
with its energy function U(x) introduced below; it
would make the pattern related to parameters we give.
Before showing the energy function U(x), some
notations are listed as follows

A ൌ ሼ0,1,2, … , G െ 1ሽ, a set of gray values

x: an initial M ൈ N texture in matrix form and xሺi, jሻ

 belongs to A

Ω ൌ ሼx | x୲ ൌ xሺi, jሻ א Aሽ, the set of all possible

 occurrences

The Fourth International Workshop on Image Media Quality and its Applications, IMQA2011
October 4-5, 2011, Kyoto, Japan

58

c: the size of neighborhood, here c ൌ 2 means

 the 2nd െ order neighbordood

θ୰: the weight of direction r

Fሺx୲ሻ ൌ α୶౪: the weight of a pixel value x୲

r ൌ minሼ1, P(y) P(x)⁄ ሽ , the renewed probability

The probability of each x א Ω can be written as

P(x)=
eିUሺxሻ

Z
 , where Z= eିUሺyሻ

yאΩ

Uሺxሻ ൌ F(xt)

MN

t=1

 H(xt,xt:+r)

c

r=ିc

MN

t=1

H(a, b) ൌ H(b, a), H(xt,xt:+r)=θrI(xt,xt:+r)

I(a, b)= ቄ െ1 if a ൌ b,
 1 otherwise′

Pሺxt|Rtሻ ൌ
expൣ‐α୶౪ െ ∑ θrI(xt,xt:+r)

c
r=ିc ൧

∑ expsאA ሾ‐αୱ െ ∑ θrI(s,xt:+r)c
r=ିc ሿ

Algorithm of texture synthesis based on MRF [2]

(1) For s = 1: MN, randomly assign a g א A for xs to
give an initial image x,

(2) For s = 1: MN, Do

(a) Let yt = xt for all t ≠ s. Choose g א A at
random and let ys = g,

(b) Let r = min { 1, P(y)/P(x) },

(c) x y with probability r.

(3) Repeat step (2) until “convergence” or K iterations,
for example, K = 50.

Figure 2. MRF-synthesized textures with the
parameters (-1, 1, 0, 1).

Figure 3. MRF-synthesized textures with the

parameters (1, 1, 0, 1).

2.2 Discrete Logarithm Problems

In encryption, it’s very easy to compute the modular
exponentiation operations via Eq. (1). But in
decryption, the inverse operation of encryption would
force hackers to face an arduous task. That is, with a
large prime p, even the hacker knows y, g and p,
without the additional information, it’s almost an
impossible mission for finding x.

y ؠ g୶ mod p, where ሺ1ሻ

x: an integer to represent the original message

y: the substitution of an encrypted message

g: a primitive root

p: a large prime number

Φሺpሻ: Euler Totient function which is defined as the

 number of positive integers less than p and

 relatively prime to p.

In Eq. (1), there exist Φ (p-1) primitive roots [9]
which possess the following property.
If p is a prime and g is a primitive root of p with

2 g p െ 1, then
ሼg୶ mod p, for 1 x p െ 1ሽ ൌ ሼ1,2, … , p െ 1ሽ.
With the property, if we take each character as an
unsigned integer under the prime p = 257, we can
encrypt messages into a sequence of meaningless
codes successfully.

2.3 Reversible Data Hiding
The most important advantage of reversible data
hiding is that after extracting messages the cover
image can be completely recovered. In Ni’s reversible
data hiding [7], peak and valley are defined as the
pixel values with the highest and lowest frequency in
the image histogram, respectively. In the beginning,
shifting all pixel values in (peak, valley) for one level
to the right (or all pixel values in (valley, peak) for
one level to the left), in embedding, it then scans bit
stream to embed the bit one into pixel value peak+1
according to the positions of pixel visits, and skip the
action of bit 0. This idea comes from seeing the peak
values as targets for embedding, thus the capacity
could be counted as the quantity of peak frequency.

2.4 Some Concepts of Quantum
Cryptography

Quantum cryptography [7] is a secure protocol system
utilizing the two quantum mechanical principles. First,
the quantum state would be spoiled if anyone attempts
to survey it. Second, in nature there exists a unique
effect in any two quanta no matter how long the
distance is. We adopt the concept of the second
property to change the embedding target every time.
In other words, the embedded target will be affected
by some pixels randomly chosen each time to increase
the security level.

59

3 Proposed Data Hiding Method
In the beginning, we set a natural correspondence of
four pixel gray values in the order of (30, 100, 170,
240) with the four 2-bit words (00, 01, 10, 11) as
shown in Table 1.

Table 1. A correspondence of natural order.

Figure 4. A paradigm of embedding.

For each 2-bit word embedding, we left circular shift
R units of the natural order (30, 100, 170, 240) such
that the same 2-bit words need not be embedded into
the same pixel values. An example of left circular
shifting R = 2 units is illustrated in Figure 5.

Figure 5. An example of left circular shifting R=2
units.

The left circular shifting units, R, is determined by the
latest embedded location. First, we randomly generate
α locations which serve as a set of fixed relative
locations. Second, use these α relative locations to get
the dependent pixel locations of the latest embedding
pixel location as demonstrated in Table 2. Then we
substitute the pixel values of the dependent pixels into
Eq. (2) to compute the left circular shifting units R;
meanwhile, we can get the shifted correspondence
between 2-bit words and four gray values. Because
the pixel values corresponding to the 2-bit words vary
along with the time, the security could be further
ensured.

Table 2. Illustration of dependent pixel locations for
an M × N cover image.

R ൌ ∑ ሺPiہ െ 30ሻ 70⁄ αۂ

iୀ1 , where ሺ2ሻ

Pi: the ith dependent pixel value,

α: the number of dependent pixels, α ൌ 10 is used.

 Embedding Algorithm

Input: a secret key K to generate α locations, and

Image (0: M-1, 0: N-1), an M×N MRF texture,
S: an (encrypted) secret message recorded as a

sequence of 2-bit words,
k: an integer in [1, 9] to signify the embedding,
R: the units of left circular shifting, R=0 initially.

(1) Randomly generate α locations using a secret key

K, set the initial embedding location as (0, 0), and
scan the cover image in a specific order, for
example, a lexicographic order.

(2) Read into a 2-bit word m from the binary
sequence of secret message S each time.

(3) Left circular shift the pixel ordered values (30,
100, 170, 240) R units which corresponds to the
2-bit word order (00, 01, 10, 11).
Find the shifted pixel value corresponding to m.

(4) Follow the latest embedding location to search
the next pixel location with the shifted pixel
value to be the latest embedding pixel location
and increase k to its pixel value.

(5) Get α dependent pixel locations by Table 2
according to the latest embedding location and α
locations and compute R by Eq. (2).

(6) Repeat steps (2~5) until the sequence of 2-bit
words for the message S are embedded.

An Illustrated Example

Image(0:4, 0:9) : a 5×10 cover image as shown in

Figure 6(a), the top leftmost pixel location is
recorded as (0, 0) with the pixel value 100.

S: Bit sequence of encrypted secret message {10, 11,
10, 01}.

α locations ={(3,0), (1,3)}, where α = 2.
k : is set to be 3 in this example.
Natural correspondence of 2-bit words and four gray
values are as given in Table 1.
R: left circular shifting units determined by Eq. (2).

(1) To embed the first 2-bit word “10” with the initial

R = 0, we find the corresponding pixel value 170
to match “10” from Table 1, we then scan the

60

cover image from (0,0) in the lexicographic order
to find the first pixel value 170 which is in the
location (0,3). We embed the “10” by updating
Image(0,3)=173 from Image(0,3)=170. The next
dependent locations relative to the current
location (0,3) are (0,3) + (3,0) = (3,3) and (0,3) +
(1,3) = (1,6) with the corresponding pixel values
Image(3,3)=240, Image(1,6)=30, respectively.
We then compute the next shift units R by Eq.(2)

as R ൌ ቔ
ଶସିଷ

ቕ ቔ

ଷିଷ

ቕ ൌ 3 0 ൌ 3 ሺmod 4ሻ.

(2) To embed the next 2-bit word “11” with R = 3
computed in the previous step, we find the
corresponding pixel value 170 which is
corresponding to 2-bit word “11” obtained by left
circularly shifting R=3 according to Table 1.
Then scan the cover image from the latest
embedded location (0, 3) in the lexicographic
order to find the next location (1, 5)
corresponding to the pixel value 170. We embed
the “11” by updating Image(1,5)=173 from
Image(1,5)=170. We then compute the next shift
units R by Eq.(2) as R=0 (mod 4).

(3) Repeat the similar processes of (1) and (2), the
contents of cover image and stego-image of this
example are shown in Figure 6.

Figure 6. (a) a cover image, (b) the stego-image.

Extraction Algorithm

Input: a secret key K to generate α locations, and
Image (0: M-1, 0: N-1): an M×N stego-image,
k: an integer in [1, 9] used to signify the embedding,
R: the left circular shifting units for each 2-bit word
used in embedding, and R=0 initially.

(1) Use the secret key K issued in embedding to

generate α locations for computing dependent
locations. Set the latest embedded (an initial
location) as (0, 0).

Scan the stego-image in the same order as used
in embedding.

(2) Follow the latest embedded location, find the
next embedded pixel location (i, j) with pixel
value g, g א {30+k, 100+k, 170+k, 240+k },
decrease pixel value Image(i, j) by k.

(3) Left circularly shift the ordered pixel values (30,
100, 170, 240) R units corresponding to the 2-

bit words (00, 01, 10, 11) according to Table 1.
Find the 2-bit word corresponding to g-k.

(4) According to the latest embedded location and α
locations to compute α dependent pixel
locations by Table 2.

(5) Compute R by Eq. (3.1).
(6) Repeat steps of (2~5) till there is no image pixel

 .{k, 100+k, 170+k, 240+k+30} א

Apply this extraction algorithm, the encrypted
sequence consisiting of 2-bit words could be retrieved.
Afterwards, the original message can be easily
decrypted. The programs hide and seek are used for
embedding and extraction, respectively.

4 Experimental Results
Since the four gray values contained in a cover image
uniformly appear, for embedding each 2-bit word, we
determine the minimum number of pixels of a cover
image by Eq.(3) such that the probability of a
successful embedding will be higher than 0.95.
Pሺat least one corresponding pixel valuesሻ 0.95
 1 െ ሺ0.75ሻL 0.95 ՜ ܮ 10 (3)

To make the probability of a successful embedding
higher than 0.95 every 2-bit word needs 11 pixels for
embedding at least. If we have T characters in a secret
message, a cover image of approximately 44*T pixels
would be enough to embed the secret message. An
article of 4574 characters, captured from
http://www.cnn.com [13] which is also available as
msg.txt [14], was used as secret message [14] for
embedding into a 256x256 MRF synthesized texture,
the cover image and the stego-image are shown in
Figure 7. The corresponding histograms of image in
Figures 7(a), (b) in Figure 8 demonstrates that the
message is uniformly embedded into the pixel values.

Figure 7. (a) a cover image, (b) a stego-image with
parameter (0, 0, 1, -1) for MRF with the image size

256×256, k=3, the message contains 4574 characters.

Figure 8. (a) histogram of Figure 7(a), (b) histogram

of Figure 7(b).

61

The parameters used for synthesizing MRF textures,
the size of three message data sets, the time for
embedding and extraction associated with the PSNR
value of measuring the difference between a cover
image and its stego-image are summarized in Table 3.

Table 3. Summary of Experimental Results.

5 Conclusion
This work addresses generating any user-requested
size of texture image, based on Markov random field
synthesis, as a cover image to meet the size of secret
message. Furthermore, if there are some pixels unused
in the later rows of a stego-image, we can cut them
without changing the visualization of stego-images.
Second, each texture synthesized with the same
parameters looks visually the same but different in
their contents. Third, the same 2-bit words need not
be embedded into the same pixel values. Without
knowing α locations, it’s hard to extract the binary
encrypted secret message sequence. In summary, if a
cover image is also part of secret information, then
our approach of using MRF-synthesized textures
provides a solution.

6 Acknowledgments
This work is supported by research Grants NSC 97-
2221-E-007-122-MY3 and NSC 100-2221-E-007-118.
We thank the valuable suggestions from the reviewers.

7 References

[1] F. J. Chang, A Steganographic Method Using

MRF-Synthesized Textures as Cover Images,
M.S. Thesis, National Tsing Hua Unviersity,
Hsinchu, Taiwan, April 2011.

[2] C.C. Chen and C.C. Chen, ‘’Texture Synthesis:
A Review and Experiments,” Journal of
Information Science and Engineering, Vol. 19,
No. 2, 371 - 380, 2003.

[3] G.R. Cross and A.K. Jain, “Markov Random
Field Texture Models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,
Vol. 5, No. 1, 25 - 39, 1983.

[4] D.M. Gordon, “Discrete logarithms in GF(p)
using the number field sieve,” SIAM J.
Discrete Math, Vol. 6, No. 1, 124 - 139, 1993.

[5] N.F. Johnson and S. Jajodia, “Steganalysis of
images Created Using Current Steganographic
Software,” Int’l Workshop in Information
Hiding, Berlin, Vol. 1525, 273 - 289, 1998.

[6] C.L. Liu and S.R. Liao, “High-performance
JPEG steganography using complementary
embedding strategy,” Pattern Recognition, Vol.
41, 2945-2955, 2008.

[7] Z. Ni, Y.Q. Shi, N. Ansari, and W. Su,
“Reversible data hiding,” IEEE Transaction on
Circuits and Systems for Video Technology,
Vol. 16, No. 3, 354 - 362, 2006.

[8] N. Provos and P. Honeyman, “Hide and seek:
an introduction to steganography,” IEEE
Security & Privacy, Vol. 1, No. 3, 32 - 44,
2003.

[9] D.R. Stinson, “Cryptography: Theory and
Practice, Champman&Hall/CRC Press, 2006.

[10] D. Stucki, N. Brunner, N. Gisin, V. Scarani,
and H. Zbinden, “Fast and simple one-way
quantum key distribution,” IEEE Applied
Physics Letters, Vol. 87, No. 19, 194108-1 -
194108-3, 2009.

 [11] A. Westfeld, “F5 – A Steganographic
Algorithm: High Capacity Despite Better
Staganalysis,” International Workshop on
Information Hiding, Berlin, Vol. 2137, 289-
302, 2001.

[12] http://en.wikipedia.org/wiki/Steganography,
last access on September 6, 2011.

[13] http://edition.cnn.com in March 2011.

[14] http://www.cs.nthu.edu.tw/~cchen/msg.txt

62

