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Abstract—Fish recognition and identification in an 

underwater environment are important research topics. In this 

study, several real-world underwater videos were collected to 

construct a fish category database for further fish recognition 

and identification. Recently, compressive sensing, using 

reconstruction algorithms to reconstruct a sparse signal, has 

been successfully applied to face recognition. Reconstruction 

algorithms can be roughly categorized into two groups: basic 

pursuit (BP) and matching pursuit (MP). BP-related methods 

adopt a convex optimization technique, while MP-related 

methods utilize greedy search and vector projection ideas. This 

study reviews concepts for these reconstruction algorithms and 

analyzes their performance. Moreover, an over-atoms 

accumulation orthogonal matching pursuit (OAOMP) method 

based on OMP is proposed. OAOMP includes two procedures: 

picking over atoms, and accumulating weighting coefficients of 

each subject to assign as new weights. OAOMP was compared 

with existing reconstruction algorithms in terms of 

reconstruction performance and run time. Experiments were 

implemented in a fish category database by using eigenfaces and 

fisherfaces for feature extraction. The experimental results 

demonstrated that BP-related methods have better recognition 

rates, while MP-related methods have shorter run times. 

Moreover, OAOMP is able to achieve better accuracy than OMP 

and other MP-related methods. 

Keywords—compressive sensing; orthogonal matching pursuit; 

pattern recognition 

I. INTRODUCTION 

Taiwan has a rich set of marine resources, including a 
variety of coral reefs and diversity of fish species. Underwater 
fish observation is important to help ecologists study the 
populations and habits of fish in particular areas of interest. A 
distributed underwater real-time stream system has been 
developed and operated for long term observation at the 
southern tropical coast of Taiwan [1]. Based on the stream 
system, 25 different and popular species of fish were collected 
to construct a fish category database for further fish recognition 
and identification. The 25 species of fish selected from the fish 
category database are shown in Fig. 1. 

 

Fig. 1. The 25 species of fish selected from the fish category database. 

Recently, compressive sensing (CS) [2, 3], a sampling 
method based on the sparsity principle, was proposed to 
reconstruct signals exactly from far fewer samples of 
measurements beyond Nyquist rates [4]. Two kinds of widely 
studied reconstruction algorithms in CS are basis pursuit (BP) 
[5] and matching pursuit (MP) [6]. The performance of 
reconstruction by BP is superior to MP, however, BP requires 
much more computing time than MP. In order to improve the 
performance of MP, several modified versions of MP, such as 
orthogonal matching pursuit (OMP) [7], compressive sampling 
matching pursuit (CoSaMP) [8], subspace pursuit (SP) [9], and 
regularized OMP (ROMP) [10] have been proposed. OMP 
utilizes orthogonal projection to improve efficiency. CoSaMP 
and SP iteratively update the atoms to eliminate incorrectly 
selected atoms by using a backtracking technique. ROMP 
reduces computational cost by selecting multiple atoms at each 
iteration. 

CS has been widely implemented in numerous applications, 
including pattern recognition, computer vision, and image 
processing. A sparse representation-based classification (SRC) 
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method [11] based on CS was proposed and successfully 
applied in face recognition. This study proposed an over-atoms 
accumulation OMP (OAOMP) method based on SRC and 
OMP for fish recognition and identification. Experiments were 
implemented in our constructed fish category database and a 
popular face database, Extended Yale B; meanwhile, 
eigenfaces [12] and fisherfaces [13] were used for feature 
extraction. The proposed method enabled higher recognition 
rates than MP-related methods. 

The rest of this paper is organized as follows: Section 2 
briefly reviews several existing CS reconstruction algorithms. 
Section 3 presents the proposed method for fish recognition 
and identification. Section 4 depicts experiment results and 
conclusions are drawn in Section 5. 

II. REVIEW OF COMPRESSIVE SENSING RECONSTRUCTION 

ALGORITHMS 

In CS, a K-sparse signal �� ∈ ℝ� means the signal owns at 
most   nonzero coefficients where  ≪ " . Reconstruction 
algorithms are used to process a  -sparse signal and find 
sparse solutions. They reconstruct �� from an underdetermined 
system # = Ψ��, where Ψ ∈ ℝ%×�  is a measurement matrix, 
and # ∈ ℝ% is a measurement vector (& ≪ "). 

A. Basis Pursuit 

The most popular reconstruction algorithm in CS is basis 
pursuit (BP) which can reconstruct a sparse signal with high 
accuracy by solving a convex optimization problem through 
linear programming (LP) [14]. The l1 norm minimization  

 min‖�‖* subject to Ψ� = # (1) 

has been done to show that it is an efficient method for 
solving LP [15, 16]. The solution of l1 norm minimization is 
unique and equal to ��. Several BP-related methods have been 
proposed, such as the primal-dual method (PD) [17] and a 
general-purpose convex programming toolbox CVX [18] 
which is easily and widely used, including the minimum 
residual method (SRC-RES) [11] and maximum probability of 
partial ranking method (SRC-MP) [19] based on SRC. The 
advantages of BP-related methods are high performance and 
robustness, while weakness includes their high computation 
complexity. 

B. Matching Pursuit 

Matching pursuit (MP) [6] is an iterative greedy algorithm 
which takes advantages of greedy search and vector projection 
to reconstruct a sparse signal. It reconstructs the  -sparse 
signal by iteratively constructing a support set S of the signal. 
At each iteration, MP optimizes the approximation by selecting 
one column (called an atom) which has the maximum 
correlation (the inner product with largest absolute value) with 
the residual +  from the measurement matrix Ψ  (called 
dictionary D). Then, MP updates the support set by appending 
the selected atoms till the termination criterion occurs. The 
drawbacks of MP are its slow convergence and poor sparse 
reconstruction performance. 

C. Orthogonal Matching Pursuit 

OMP [7], an improved version of MP, has the capability to 
eliminate MP drawbacks by projecting the signal orthogonally 
onto the set composed of all selected atoms. The principle of 
OMP is the same as MP, but a major difference is that OMP 
never chooses an atom that was selected in previous iterations 
since the residual + is orthogonal to the already chosen atoms. 

The main steps of OMP are as follows: 

Initialization: The residual +� = #, the support set S� = ∅. 

Repeat the following steps   times. 

1) Identify: Find the index λ.  of the atom ψ0  with the 
largest absolute value of inner product. 

 λ. = argmax*101�|〈+.3*, ψ0〉| (2) 

2) Merge: Merge the current selected atom with the 

previous support set 6.3*. 

 S. = S.3* ∪ λ. , Ψ. = [Ψ.3*ψ89] (3) 

3) Estimation: Compute the sparse coefficient by using 

least squares. 

 �. = argmin�:‖# − Ψ<�:‖> (4) 

4) Update: Estimate new approximation at and update the 

residual. 

 ?. = Ψ.�. , +. = # − ?. (5) 

D. Compressive Sampling Matching Pursuit 

CoSaMP [8] incorporates a backtracking technique to 
refine the previous selected atoms. Moreover, CoSaMP utilizes 
a multiple atoms selection procedure to accelerate computation 
speed. At each iteration, it picks up 2  largest atoms and 
merges the selected atoms with the current support set. Then, 
CoSaMP adds a new pruning step which keeps the   largest 
atoms and prunes the others in order to keep the size of the 
support set as  . Thus, CoSaMP is able to eliminate incorrectly 
selected atoms that OMP cannot. 

The main steps of CoSaMP are as follows: 

Repeat the following steps until the halting criterion has 
been satisfied. 

1) Identify: Form a signal proxy, and find the largest 2  
atoms of the proxy. 

 @ = {A0|A0 = |〈+,ψ0〉|, B = 1,2, … , "} (6) 

 Ω = supp(@>F) (7) 

2) Merge: Merge the support of the signal proxy with the 

support set of the previous iteration. 

 S. = Ω ∪ S.3* (8) 
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3) Estimation: Estimate the solution by using least squares. 

 �G = argmin�:‖# − Ψ0�:‖> (9) 

4) Pruning: Produce a new approximation by retaining 

only the largest   atoms in HI. 

 �. = �G(F) (10) 

5) Update: Update the residual. 

 +. = # − Ψ�. (11) 

E. Subspace Pursuit 

The procedure of SP [9] is quite similar to CoSaMP, and it 
can also update the selected set based on the backtracking 
concept. The main difference between SP and CoSaMP is in 
the manner in selecting atoms. CoSaMP selects 2  atoms at 
each iteration, while SP selects only   atoms. At each iteration, 
SP utilizes two tests to refine the selected set. The preliminary 
test is to find the most   correlated atoms and merge to the 
support set. Then, it refines the function to find the   largest 
atoms from the merged set. SP not only has low computation 
complexity compared with OMP, but also has good accuracy 
reconstruction that is the same as that of BP methods.  

F. Regularized Orthogonal Matching Pursuit 

ROMP [10] also selects multiple atoms at each iteration. It 
selects the   (sparsity) atoms with the largest absolute value of 
the inner product to construct an energy set E. Then, in the 
regularized step, it only considers the subset E� , which has 
maximal energy among all subsets of E. 

The main steps of ROMP are as follows: 

Repeat the following steps   times or until |I| ≥2 , where 
I is an index set. 

1) Identify: Find the   largest atoms of the observation 
vector @, and construct an energy set E. 

 @ = {A0|A0 = |〈+,ψ0〉|, B = 1,2, … , "}, (12) 

 E = supp(@F) (13) 

2) Regularize: Among all subsets E0 ⊂ E. 

 |@(B)| ≤ 2|@(O)| for all B, O ∈ EP (14) 

 @QR = argmax {U@QVU>, W = 1,2, … ,  } (15) 

3) Estimation: Compute the sparse coefficient by using 

least squares. 

 �. = argmin�:‖# − Ψ.�:‖> (16) 

4) Update: Add the set E0 to the index set and update the 

residual. 

 I. = I.3* ∪ E�, +. = # − Ψ�. (17) 

The run time of ROMP is significantly shorter compared to 
OMP, but reconstruction performance is worse than OMP. 

III. OUR PROPOSED METHOD 

A. Fish Recognition Method 

A sparse representation-based classification (SRC) method 
[11] based on CS was proposed for robust face recognition. It 
represents a testing image # of the ith

 subject as a sparse linear 
combination of all training images, i.e. # = ΨX , where 
Ψ = [ψ*, ψ>, … , ψF]  is the concatenation of the N training 
images from all of the   subjects, and  ψ0 is the set of training 

images of the ith
 subject. X = [X(*); X(>); … ; X(F)] is the set of 

weighting coefficients, where X(0) = [Z*
(0), Z>

(0), … , Z\^
(0)]_  and 

`0 is the number of the ith
 subject. These weighting coefficients 

can be obtained by using reconstruction algorithms. Due to # 

belonging to the ith subject, only the coefficients in X(0) have 

significant values, and all the coefficients in X(b), j=1,2,…,  
and j i, are nearly zero. In the noiseless case, the correct   

atoms will be selected using OMP algorithm. As to the noise 
case, however, the incorrect atoms may be selected. In order to 
address a noise case and improve reconstruction performance, 
an over-atoms accumulation orthogonal matching pursuit 
(OAOMP) method based on SRC and OMP was proposed in 
this study for fish recognition and identification. OAOMP 
includes two procedures: picking over atoms and accumulating 
the weighting coefficients for each subject to assign as new 
weights. The first procedure of OAOMP is to set the pre-
defined number of iteration  c  to be greater than the signal 
sparsity   that over atoms will be picked. The selected over 
atoms include more correct atoms, since the atoms founded by 
setting  c >   will contain the atoms found by setting  c =  . 
This concept is simple but crucial for the later procedure. 
Based on the selected over atoms, the second procedure 
accumulates weighting coefficients for each subject, 
respectively, to obtain a new weight for each subject. The 
subject with the new maximum weight is regarded as the 
recognition result. 

The main steps of OAOMP are summarized as follows: 

1) Set Ψ = [ψ*, ψ>, … , ψF]  as a matrix of the training 
images for   subject, and a testing image  # as input data. 

2) Repeat OMP procedures  c times to obtain  c atoms. 

3) Compute the new weight e0(#) = ∑ Zb
(0)\^

bh*  of each fish, 

respectively. 

4) Assign the maximum weight j(#) = arg{max0 e0(#)}, 
and label # by identity(#) = j(#). 

B. Fish Identification Method 

The fish identification verifies whether the testing image # 
is one of the fish species in the database, which is counted as 
valid identification, or if it is a new fish species, which is 
counted as invalid identification. This helps biologists to gain a 
greater understanding of the fish population in the area of 
interest. OAOMP can also be used to implement fish 
identification. A valid testing image should have sparse 
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representation whose signification coefficients concentrate 
mostly on the correct subject, whereas an invalid testing image 
has coefficients spread widely among multiple subjects. Based 
on this concept, two identification rates are defined: valid 
identification rate (VIR) and invalid identification rate (IIR). 
High VIR means the testing image is one of the fish species in 
the category database, while high IIR  represents the testing 
image that is a new fish species that does not belong to any fish 
species in the category database. The identification rates are 
computed as follows:  

1) Set the number of valid testing images oq  and the 
number of invalid testing images ot as input data. 

2) Implement OAOMP method to obtain the maximum 
weight j(#) of each fish #. 

3) Compute identification probability value v(0) = j(#)

∑ X(^)w
^yz

. 

4) Assign a threshold ~, and compute VIR using oq and IIR 
using ot. 

VIR = ��
��

, where �q  is the number that v(0) > ~  and the 

valid testing image of a fish species (i) is correctly classified to 
the fish species (i) in the category database. 

IIR = ��
��

, where �t is the number that v(0) < ~. 

IV. EXPERIMENTAL RESULTS 

Performance was evaluated for the proposed method, 
OAOMP, in a fish category database and the popular Extended 
Yale B face database [19]. PCA (eigenfaces) and LDA 
(fisherfaces) were used for feature extraction, respectively. A 
comparison was done of reconstruction performance and run 
time of OAOMP with existing reconstruction methods such as 
BP-related methods, OMP, CoSaMP, SP and ROMP. All 
experiments were run on a PC with CPU i5-3570 at 3.4 GHz, 
8GB RAM with Windows 7 using MATLAB 7.5.0. 

A. Fish Category Database 

The fish category database consists of 25 fish species, and 
each species is described by 40 fish images, which results in a 
total of 1000 fish images. Each image has 160 row pixels and 
120 column pixels, recorded in a JPEG file format. The total 40 
fish images of subject 1 are illustrated in Fig. 2 as an example. 
As for each species of fish, 20 images were randomly selected 
for training, while the remaining 20 images were utilized for 
testing. All reconstruction algorithms were implemented over 
all species and repeated 10 times to obtain a stable average 
value. The eigenfaces and fisherfaces are adopted for feature 
extraction, and the first d values of the features were selected to 
form a feature space as well as represent the features of the 
image. Recognition rates were computed with the feature space 
dimensions d = 50, 100, 150, 200, 250, respectively. Table 1 
shows the recognition rates of all methods using eigenfaces for 
feature extraction and the bold values indicate the best 
recognition rates: (1) PD, (2) SRC-RES, (3) SRC-MP 
(rank=20), (4) OMP, (5) CoSaMP, (6) SP, (7) ROMP and (8) 
OAOMP ( c =  +5). The curves of recognition rate versus 
the dimension of features are illustrated in Fig. 3. 

 

Fig. 2. An example of total 40 fish images of subject 1. 

TABLE I.  RECOGNITION RATES (%) IN FISH CATEGORY DATABASE 

USING EIGENFACES 

          d 50 100 150 200 250 

(1) 81.0 78.2 77.4 78.8 75.4 

(2) 83.2 82.0 81.6 82.4 82.6 

(3) 83.8 81.2 80.4 79.4 78.2 

(4) 69.4 74.2 76.2 77.6 78.2 

(5) 42.8 53.2 59.4 61.0 60.8 

(6) 45.6 55.8 58.9 61.5 62.8 

(7) 48.4 62.2 64.8 68.8 68.2 

(8) 70.0 76.2 80.6 81.6 81.2 

 

 

Fig. 3. Recognition rates of all methods versus feature dimension in fish 
category database. 

Table 2 shows the recognition rates of all methods using 
fisherfaces for feature extraction and the bold values indicate 
the best recognition rates: (1) PD, (2) SRC-RES, (3) SRC-MP 
(rank=20), (4) OMP, (5) CoSaMP, (6) SP, (7) ROMP and (8) 
OAOMP ( c =  +5). 
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TABLE II.  RECOGNITION RATES (%) IN FISH CATEGORY DATABASE 

USING FISHERNFACES 

          d 50 100 150 200 250 

(1) 72.8 75.0 77.4 76.6 76.8 

(2) 80.0 81.0 827.2 80.6 80.2 

(3) 78.0 80.4 80.8 79.2 78.2 

(4) 72.0 72.6 76.4 76.4 76.2 

(5) 65.0 72.8 75.2 72.4 72.6 

(6) 54.6 65.8 70.2 71.5 72.8 

(7) 48.4 62.6 66.0 68.2 68.2 

(8) 65.4 77.2 80.2 79.6 79.8 

 

The run time of all methods was also compared. Table 3 
shows the run time (s) of all methods using eigenfaces for 
feature extraction with feature space dimensions d = 250: (1) 
PD, (2) SRC-RES, (3) SRC-MP (rank=20), (4) OMP, (5) 
CoSaMP, (6) SP, (7) ROMP and (8) OAOMP ( c =  +5). 

TABLE III.  RUN TIME (S) IN FISH CATEGORY DATABASE USING 

EIGENFACES 

(1) (2) (3) (4) (5) (6) (7) (8) 

0.1443 0.3747 0.3738 0.0062 0.0059 0.0019 0.0040 0.0075 

 

The experimental results show that the recognition rates of 
BP-related methods are superior to MP-related methods. The 
recognition rates of OMP are better than other MP-related 
methods. Moreover, our proposed OAOMP method obtains a 
better recognition rate than OMP. The experimental results also 
show that the run time of MP-related methods are shorter than 
BP-related methods, while SP has the shortest run time. 

OAOMP utilizes an over-atoms concept to obtain over 
atoms. This study also estimated the influence of over-atoms. 
Different  c were assigned to compare recognition rates. Table 
4 shows recognition rates with different  c where eigenfaces 
are used for feature extraction with feature space dimensions d 
= 250. The experimental results showed that the larger  c, the 
higher the recognition rate when  c is in a certain range. 

TABLE IV.  THE RECOGINTION RATES (%) WITH DIFFERENT  c 

 c =    c =  +5  c =  +10  c =  +15  c =  +20 

78.6 81.2 82.0 82.2 81.6 

 

For fish identification, 30 fish images were randomly 
selected for training, while the remaining 10 fish images were 
used for testing. The 10 testing images were used, as valid fish 
images for calculating VIR. Furthermore, 25 new species of 
fish, with 10 images for each species, were collected as invalid 
fish images, to calculate IIR. Table 5 shows the VIR and IIR of 
OAOMP ( c =  +5) using eigenfaces and fisherfaces for 
feature extraction: (1) OAOMP-VIR (eigen), (2) OAOMP-IIR 
(eigen), (3) OAOMP- VIR  (fisher), and (4) OAOMP- IIR 
(fisher). 

TABLE V.  IDENTIFICATION RATES (%) IN FISH CATEGORY DATABASE 

          d 50 100 150 200 250 

(1) 80.0 84.0 88.0 84.0 92.0 

(2) 76.0 80.0 88.0 84.0 88.0 

(3) 60.0 68.0 76.0 80.0 84.0 

(4) 72.0 76.0 80.0 88.0 84.0 

 

Most of the VIR and IIR were over 80%, which implies that 
OAOMP was able to successfully classify valid testing fish 
images for known species of fish with a high degree of 
accuracy. Moreover, our method also efficiently identifies 
invalid testing fish images as new fish species. 

B. Extended Yale B Face Database 

In order to demonstrate that the proposed method and 
existing reconstruction algorithms have good reconstruction 
performance in pattern recognition, a popular and widely used 
face database, Extended Yale B, was utilized to test the 
performance of these reconstruction algorithms. 

The Extended Yale B database has about 2,500 images of 
39 different individuals. Thirty-four individuals were used 
because there are some missing images. Our database consisted 
of 2,108 faces that were cropped and normalized images of 192 
rows and 168 columns in a PGM file format. There were 34 
persons that individually contributed 62 frontal-images 
captured under various laboratory-controlled lighting 
conditions. The first 32 images of individual 1 are shown in 
Fig. 4. As for each subject, 31 images were used for training 
and the remaining 31 images for testing were randomly 
selected. 

 

Fig. 4. An example of 32 face images of the 1st individual in the Extended 

Yale B face database. 

Recognition rates were computed with feature space 
dimensions d = 50, 100, 150, 200, 250, respectively. Table 6 
shows the recognition rates of all methods using eigenfaces for 
feature extraction and the bold values indicate the best 
recognition rates: (1) PD, (2) SRC-RES, (3) SRC-MP 
(rank=20), (4) OMP, (5) CoSaMP, (6) SP, (7) ROMP and (8) 
OAOMP ( c =  +5). 
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TABLE VI.  RECOGNITION RATES (%) IN EXTENDED YALE B FACE 

DATABASE USING EIGENFACES 

          d 50 100 150 200 250 

(1) 92.69 95.73 96.11 96.20 96.11 

(2) 94.50 96.58 96.49 97.06 97.34 

(3) 95.64 97.25 97.63 97.63 97.63 

(4) 77.89 92.69 95.26 95.45 95.64 

(5) 62.81 80.93 87.86 90.32 92.13 

(6) 42.88 81.50 88.33 89.85 91.84 

(7) 46.96 77.42 87.76 90.13 92.60 

(8) 80.93 94.31 96.20 96.58 97.06 

 

Table 7 shows the recognition rates of all methods using 
fisherfaces for feature extraction and the bold values indicate 
the best recognition rates: (1) PD, (2) SRC-RES, (3) SRC-MP 
(rank=20), (4) OMP, (5) CoSaMP, (6) SP, (7) ROMP and (8) 
OAOMP ( c =  +5). 

TABLE VII.  RECOGNITION RATES (%) IN EXTENDED YALE B FACE 

DATABASE USING FISHERNFACES 

          d 50 100 150 200 250 

(1) 96.02 96.96 96.49 96.39 96.49 

(2) 97.53 97.82 97.82 97.53 98.29 

(3) 97.82 98.01 97.72 97.34 97.63 

(4) 96.39 96.30 96.02 95.54 96.02 

(5) 86.15 91.46 94.78 94.78 95.26 

(6) 79.70 91.08 94.97 95.45 95.07 

(7) 68.31 91.08 94.97 95.16 95.73 

(8) 97.72 97.44 97.34 96.77 96.77 

 

V. CONCLUSION 

This study presented and analyzed numerous reconstruction 
algorithms in compressive sensing, such as basic pursuit, 
orthogonal matching pursuit (OMP), compressive sampling 
matching pursuit, subspace pursuit, and regularized OMP. 
Based on OMP, an over-atoms accumulation OMP (OAOMP) 
method was proposed to improve reconstruction performance. 
OAOMP included two procedures: picking over atoms, and 
accumulating the weighting coefficients of each subject to 
assign as new weights. OAOMP was implemented for fish 
recognition and identification in a fish category database which 
was constructed from a real-world underwater stream system in 
Taiwan. OAOMP was evaluated and compared with existing 
reconstruction algorithms in terms of recognition rates, 
identification rates and run time. The experimental results 
showed that in general BP-related methods had better 
recognition rates than MP-related methods under the same 
dimensionality, while MP-related methods had shorter run 
times than BP-related methods. Moreover, OAOMP was able 
to achieve higher accuracy than OMP and other MP-related 
methods.  
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