
1 INTRODUCTION 
 
People produce huge amount of data in daily life. By 
collecting and analyzing big data (WebBigData), 
they want to improve life or to replace human labor, 
such as predict economic circumstances and identify 
diseases. With the rapidity of computing speed and 
the substantial increase of storage space, it is an im-
portant issue to reveal the structure of high-
dimensional data by visualization. This paper aims 
to investigate two popular methods, Principal com-
ponent analysis (PCA) and Linear Discriminant 
Analysis (LDA) for data visualization (Bishop 
2006). 
PCA is a statistical procedure that uses an orthogon-
al transformation to convert a set of possibly corre-
lated observations into a set of linearly uncorrelated 
components called principal components. On the 
other hand, LDA, a generalization of Fisher's linear 
discriminant (Bishop 2006), is a method to find a li-
near combination of observations which characteriz-
es or separates two or more classes of objects. In 
other words, PCA and LDA are two widely used 
multivariate statistical methods used for dimensio-
nality reduction, feature selection, or classification 
in the area of Machine Learning and Pattern Recog-
nition (Bishop 2006). This paper aims to provide 
simple Matlab codes (Hanselman & Littlefield 2005) 
for implementations by PCA and LDA with the em-
phasis on the 2D and 3D visualization of high-
dimensional data, including 

Munson’s character data set (Jain & Dubes 1988), 
Alon’s colon cancer data set (WebArray), and a 
Wine data set (WebWine). 
 
2 PRINCIPAL COMPONENT ANALYSIS AND 

LINEAR DISCRIMINANT ANALYSIS 

2.1 Principal Component Analysis (WebPCA) 

Principal Component Analysis is a method of multi-
variate statistical analysis for dimensionality reduc-
tion on high-dimensional data sets. We give the 
problem statement and provide a computational so-
lution as follows. 

2.1.1. Problem Statement and Its Solution 
Let X be an m-dimensional random vector with co-
variance matrix C. The problem is to consecutively 
find the unit vectors ܉ଵ, ,ଶ܉ … , ܉ such that 
ݕ ൌ  with ܻ܉௧ܠ ൌ X௧܉ satisfies 
 
(a)var(Y1) is the maximum. 
(b)var(Y2) is the maximum subject to cov(Y2,Y1)=0. 
(c) var(Yk) is the maximum subject to cov(Yk,Yi)=0, 

 where1<i<k≤m. 

Yi  is called the i-th principal component. 
 
To fulfill the above statements, we let (λ୧,ܝ୧) be the 
pairs of eigenvalues and eigenvectors of C such that 
ଵߣ  ଶߣ  ڮ  ԡଶܝ  and ԡߣ ൌ 1,1  ݅  ݉. 
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Then it can be shown that ܉ ൌ  and varሺܝ ܻሻ ൌ
 for 1ߣ  ݅  ݉  (Jolliffe 1986). 

2.1.2 Computing Principal Components 
Given observations ܠଵ, ,ଶܠ … , ୬ܠ א  ܴ, the follow-
ing procedures show how to compute principal com-
ponents. 
(1) Compute the mean vector  ܝ ൌ ∑ iܠ

n
iൌ1 /n 

(2) Compute the covariance matrix ܥ ൌ
 ∑ ሺܠ െ ܠሻሺܝ െ ሻ௧୬ܝ

ୀଵ /n. 
(3) Compute the eigenvalue/eigenvector pairs 

ሺߣ, ଵߣ ሻ of C, 1 ≤ i ≤ m, whereܝ  ଶߣ  ڮ 
ߣ  0.  

(4) Compute the first d principal components  
ݕ 

ሺሻ ൌ ܠ
௧ܝ for each observation ܠ , 1  ݅ 

݊, along the direction ܝ, 1 ≤ j ≤ d. 
 
It must be mentioned that the estimated covariance 
matrix C is nonnegative definite, all of its eigenva-
lues are real and nonnegative. For most of the prac-
tical data sets, fewer eigenvalues dominate the oth-
ers, that is, ߩ ൌ ఒభାఒమାڮାఒೖ

ఒభାఒమାڮାఒೖାڮାఒ
 85% for 1 ≤ 

k << m. In applications, it usually selects k ൌ 2 or 3 
for the purpose of visualization. 

2.2 Linear Discriminant Analysis (WebLDA) 

Linear Discriminant Analysis is another method of 
multivariate statistical analysis for dimensionality 
reduction or classification with the category of each 
object is tagged. We give the problem statement fol-
lowed by a computational solution below. 
Given a set of training patterns ܠଵ, ,ଶܠ … ,   fromܠ
K categories, where ݊ଵ  ݊ଶ  ڮ  ݊ ൌ ݊. Define 
the mean vector u, the between-class scatter matrix 
B, the within-calss scatter matrix W, and the total 
scatter matrix T as follows. 
ܝ ൌ ∑ ୧ܠ

୬
୧ୀଵ /n                          (1) 

  
B ൌ ∑ ݊ሺܝ െ ܝሻሺܝ െ ୬࢚ሻܝ

୧ୀଵ                             (2) 
 
W ൌ ∑ ∑ ሺܠ െ ܠሻሺܝ െ ࢚ሻܝ

אܠ
K
୧ୀଵ                      (3) 

 
T ൌ ∑ ሺܠ െ ܠሻሺܝ െ ୬࢚ሻܝ

୧ୀଵ                                  (4) 
 
Note that B+W=T. Define a criterion 
ρ ൌ ሺܞ௧Bܞ/ܞ௧Wܞሻ                                                  (5) 
 
A classical discriminant analysis finds an optimal set 
of discriminant vectors by 
[a] Look for a unit vector ܝଵ which maximizes  ρ, 

where ܝଵ  is the eigenvector corresponding to 
the largest eigenvalue of the following equations 

 
Bܝ ൌ λW(6)                                                               ܝ 
 
[b] Look for a unit vector ܝଶ which maximizes ρ 
subject to ܝଶ

௧ Wܝଵ=0. 
 

[c] Sequentially seek for a unit vector ܝ  which 
maximizes ρ  subject to ܝ

௧ Wܝ=0 for k>2, and 
1  j ൏ ݇. 

 
In practical applications, we compute the first three 
generalized eigenvectors corresponding to the larg-
est three generalized eigenvalues from eq. (6) for our 
usage. 

3 DATA DESCRIPTION 

We implement PCA and LDA for visualization on 
three high-dimensional data sets which are intro-
duced as follows. 

3.1 Munson’s 8OX Data Set (Jain & Dubes 1988) 

The first data set, 8OX, is extracted from Munson’s 
handprinted Fortran character set (Jain & Dubes 
1988). The 45 8-dimensional pattern vectors were 
derived from 45 handprinted characters written by 
15 persons, each person wrote the characters “8,” 
“O,” and “X” once. A handprinted character is inter-
preted as a binary image placed on a 24ൈ24 grid and 
a pattern vector consisting of eight features, 
represents the distances (counted in the number of 
pixels) measured from the eight directions: East, 
Northeast, North, Northwest, West, Southwest, 
South, and Southeast directions, respectively. 
 

3.2 Colon Cancer Data Set (Alon et al. 1999) 

The colon cancer data set was one of the gene ex-
pression data sets collected by Kent Ridge Biomedi-
cal Data Set (WebArray). The colon data set con-
tains 62 patient samples (as patterns in our study). 
Among which, 40 samples come from tumor biop-
sies (labelled as "negative") and 22 samples come 
from normal biopsies (labelled as "positive") which 
are healthy parts of the colons of the same patients.  
Two thousand out of around 6500 genes were se-
lected based on the confidence in the measured ex-
pression levels (Alon et al. 1999). The best 46 genes 
(as features in our study) with the biological infor-
mation unaltered are selected by applying Fisher's 
Linear Discriminant Analysis (De la Bastida 2013). 
 

3.3 Wine Data Set (WebWine) 

The Wine data were found in UCI Machine Learn-
ing Repository, a website contains a collection of da-
tabases, domain theories, and data generators that 
are used by the machine learning community. The 
data are the results of a chemical analysis of wines. 
The wines were grown in the same region in Italy, 
but were derived from three different cultivars. 
An analysis determined the quantities of 13 conti-
nuous constituents (as features) found in each of the 
three types of wines (as classes in our study). Within 



178 instances (as patterns in our study), Class 1 in-
cludes 59 patterns, Class 2 includes 71 patterns, and 
Class 3 includes 48 patterns. 
 
The numbers of features, patterns, and categories in 
the above data sets are summarized in Table 1. 
 
Table 1.  A Summary of Data Sets in Experiments. _______________________________________________ 
Data    # of features   # of Patterns   # of Categories _______________________________________________ 
8OX      8        45 (15, 15, 15)     3 
Colon   46        62 (22, 40)        2 
Wine    13       178 (59, 71, 48)     3 _______________________________________________ 

4  EXPERIMENTS WITH MATLAB CODES 
 
We illustrate 2D and 3D plots by PCA and LDA on 
the aforementioned three data sets which help vi-
sualize the clustering tendency of high-dimensional 
data which may also help reveal the distance of ob-
jects in different categories. To overcome the huge 
difference in scale between different features, we 
adopt a z-score transform (Jain & Dubes 1988) to 
convert a feature into a Gaussian-like distribution by 
 
Z=(X-u)/s,                              (7) 
 
where u is the sample mean and s is the correspond-
ing standard deviation. 

4.1 Results on 8OX data set 

Figure 1 shows the projection plots by PCA and 
LDA on 8OX data set for visualization. 
 

  
(a) 2d PCA on 8OX (b) 3d PCA on 8OX

  
(c) 2d LDA on 8OX (d) 3d LDA on 8OX

 
Figure 1. Projection by PCA and LDA on 8OX data. 
 

4.2 Results on Colon cancer data set 

Figure 2 shows the projection plots by PCA and 
LDA on colon cancer data set for visualization. 
 

 
(a) 2d PCA on Colon (b)3d PCA on Colon

 
(c) 2d LDA on Colon (d) 3d LDA on Colon
 

Figure 2. Projection by PCA and LDA on Colon 
cancer data. 
 
 

4.3 Results on Wine data set 

Figure 3 shows the projection plots by PCA and 
LDA on wine data set for visualization. 
 

 
(a) 2d PCA on Wine (b) 3d PCA on Wine

 
(c) 2d LDA on Wine (d) 3d LDA on Wine
 

Figure 3. Projection by PCA and LDA on the Wine 
data set. 
 



4.4 Discussion 

The visualization on the projection results by PCA 
and LDA demonstrates that the patterns by LDA in 
different categories are more separable than those 
obtained by PCA due to that LDA utilizes the cate-
gory information but PCA does not. In computation, 
LDA may encounter the singularity problem of the 
within-class scatter matrix, whereas, the problem 
could be resolved by applying the preconditioning 
and diagonal shifting strategies (Heath 2002, Hsu 
2014). We adopt the latter strategy to avoid the near-
singularity problem which did not occur in the 
aforementioned three test data sets.  

5 MATLAB CODES FOR PCA AND LDA 

Simple Matlab codes (Hsu 2014) for implementing 
PCA on colon cancer data set consisting of 62 pa-
tients (22 normal and 40 tumor cases) with 46 fea-
tures in two categories are listed below. The input 
data set derived from (Alon et al. 1999) could be 
found in (De la Bastida 2015). 

5.1 Matlab code for 2d PCA on colon data set 

% Filename: pcacolon.m 
%    PCA on colon62x46.txt 
fin=fopen('colon62x46.txt','r'); 
d=46;  N=62;  
fgetl(fin); fgetl(fin); fgetl(fin); 
% read the input data  
A=fscanf(fin,'%f\t',[d+1 N]);  A=A'; 
Z=A(:,1:d);   % remove labels in the last column 
% Do z-score transform 
u=mean(Z,1); s=std(Z,1); 
for j=1:d 
    u0=u(j); s0=s(j); 
    X(:,j)=(Z(:,j)-u0)/s0; 
end 
K=2;  Y=PCA(X,K);   % call PCA function 
X1=Y(1:22,1); Y1=Y(1:22,2);  
X2=Y(23:62,1); Y2=Y(23:62,2); 
plot(X1,Y1,'Og',X2,Y2,'^r');   
legend('- Normal','- Tumor') 
 

5.2 Matlab code for function PCA 

function Y=PCA(X,K) 
C=cov(X); 
[U D]=eig(C); 
L=diag(D); 
[E index]=sort(L,'descend'); 
Xproj=zeros(d,K);  % initiate a projection matrix 
for j=1:K 
   Xproj(:,j)=U(:,index(j)); 
end 
Y=X*Xproj;      % first K principal components 

5.3 Matlab code for LDA on Wine data set 

fin=fopen('wine178x13.txt'); 
d=13;  n=178;    % d features, n patterns 
L(1)=59;  L(2)=130;  L(3)=178; 
fgetl(fin); fgetl(fin); fgetl(fin); 
A=fscanf(fin,'%f',[1+d, n]);  A=A';  
n1=59;  n2=71;  n3=48;   X=A(:,1:d); 
% (a) - Covariance Matrix T 
X1=X(1:L(1),:);  X2=X(1+L(1):L(2),:);  
X3=X(1+L(2):L(3),:); 
m1=mean(X1);  m2=mean(X2);  m3=mean(X3); 
mu=mean(X);   T=cov(X); 
W1=cov(X1);   W2=cov(X2);   W3=cov(X3);  
W=(n1-1)*W1+(n2-1)*W2+(n3-1)*W3; 
B=(n1-1)*(m1-mu)'*(m1-mu)+… 

(n2-1)*(m2-mu)'*(m2-mu)+… 
(n3-1)*(m3-mu)'*(m3-mu); 

s=0.0001; 
C=(inv(W+s*eye(d)))*(B+eps); 
% (b) - Compute Eigenvalues of W^{-1}B 
[U D]=eig(C); 
Lambda=diag(D); 
[Cat index]=sort(Lambda,'descend'); 
% (c) – 3d LDA Projection for Wine data set 
K=3;     
Xproj=zeros(K,d);   % initiate a projection matrix 
for i=1:K 
   Xproj(i,:)=U(:,index(i))'; 
end 
Y=(Xproj*X')'; %first K discriminative components 
X1=Y(1:L(1),1);     Y1=Y(1:L(1),2);    
Z1=Y(1:L(1),3); 
X2=Y(1+L(1):L(2),1); Y2=Y(1+L(1):L(2),2); 
Z2=Y(1+L(1):L(2),3); 
X3=Y(1+L(2):L(3),1); Y3=Y(1+L(2):L(3),2); 
Z3=Y(1+L(2):L(3),3); 
plot3(X1,Y1,Z1,'d',X2,Y2,Z2,'O',X3,Y3,Z3,'X'); … 
grid 
legend('Class 1 (59)','Class 2 (71)','Class 3 (48)') 
 

5.4 Summary 

The result of Figure 1(c) is the output by running the 
Matlab code provided in sections 5.1 and 5.2 and 
section 5.3 lists the Matlab code for running the 
LDA with the output as shown in Figure 3(d). 

6 CONCLUSION 

The major task of this paper is to provide Matlab 
codes for high-dimensional data visualization by 
Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) with the experiments 
tested on three data sets, 8OX data, colon cancer da-
ta, and wine data. The results illustrate that LDA 



generally provides a better visualization for the clus-
tering tendency than that obtained by PCA. Howev-
er, for some applications, the category information 
of input data may not be available, in such cases, 
PCA is an alternative choice. 
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