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Abstract– In face recognition, LDA often encounters the so-called small sample size (SSS) problem, also known as 

curse of dimensionality. This problem occurs when the dimensionality of the data is quite large in comparison to the 

number of available training images. One of the approaches for handling this situation is the subspace LDA. It is a 

two-stage framework: it first uses PCA-based method for dimensionality reduction, and then the LDA-based method 

is applied for classification. This paper investigates four popular subspace LDA methods: Fisherface, Complete 

PCA plus LDA, IDAface, and BDPCA plus LDA and compare their effectiveness when handling the SSS problem 

in face recognition. Experimental results tested on three publically available face databases: JAFFE, ORL, and FEI, 

show that LDA without reducing image size by PCA projection is the worst and BDPCA plus LDA performs better 

than the other methods for a huge size of database. 
 

Keywords: Face Recognition, Linear Discriminant Analysis (LDA), Principal Component Analysis 

(PCA) 
 

 

1. Introduction 
Face recognition has recently received significant attention and been an important issue in pattern 

recognition and image analysis over the last few decades as shown by Samaria et al. (1994), Zhao et al. 

(2003), and Li et al. (2011). The ultimate goal in face recognition is to develop a computer-based 

automated system which works reliably under unconstrained conditions, runs quickly and requires 

minimum training data. However, it is still an on-going research area. 

Face recognition methods are of two types, the geometry-based approach and the appearance-based 

approach. The geometry-based approach aims to locate distinctive features such as eyes, nose, mouth, and 

chin. Properties of the features and relations such as distances and angles between the features are used as 

descriptors for face recognition. The appearance-based approach operates directly on the intensities of 

pixels within the face images and processes an image as a two-dimensional holistic pattern. It extracts 

features in a subspace derived from the training images. Compared to the geometry-based approach, the 

appearance-based approach performs more robustly under situations like noise, blurring, andthe variations 

in illumination, facial expressions and occlusion etc. in images. 

During the last few decades, many appearance-based approaches have been developed based on 

Principal Component Analysis (PCA), called Eigenface, such as Sirovich et al. (1987), Kirby et al. (1990), 

Turk et al. (1991), and Linear Discriminant Analysis (LDA) by Fisher et al. (1936), called Fisherface such 

as  Belhumeur et al. (1997), Yu et al. (2001), Yang et al. (2003), Zhao et al. (2003), and their variants. 

LDA usually outperforms PCA for classification tasks since LDA takes class information into 

account while PCA does not. However, in face recognition, LDA often faces the so-called small sample 

size (SSS) problem due to the relatively small number of training images per individual compared to the 

dimensionality of the image space, and would result in the singularity of the within-class scatter matrix. 

A number of approaches have been proposed to address the SSS problem. One of the most successful 

approaches is the subspace LDA, which is a two-phase framework: first projecting the original images 

into a subspace, where dimensionality is reduced; next preceding LDA-based methods on the lower 
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dimensional subspace. This paper reports the experimental results on 3 databases of four LDA-based 

methods: Fisherface (PCA plus LDA) by Belhumeur et al.(1997), Complete PCA plus LDA by Yang et al. 

(2003), an improved discriminate analysis (PCA plus IDA) as shown by Zhuang et al.(2007), and the Bi-

Directional PCA plus LDA (BDPCA plus LDA) as shown by Zuo et al.(2006). 

The rest of this paper is to give the mathematical foundation of PCA and LDA, review the four 

subspace LDA methods and show the results of comparison on three databases followed by a conclusion. 

 

2. Background Review 
 

2. 1. Notations 
 Let{𝑋1, 𝑋2, … , 𝑋𝑁} be a training set of 𝑁  gray level face images of 𝑅  rows and 𝐶  columns, and 

 𝑋𝑛(𝑟, 𝑐) ∈ {0, 1, … , 255} ,  𝑛 = 1, 2, … , 𝑁 , 𝑟 = 0, 1, … , 𝑅 − 1 , 𝑐 = 0, 1, … , 𝐶 − 1 . Let �̅� =
1

𝑁
∑ 𝑋𝑛

𝑁
𝑛=1 ∈

ℝ𝑅×𝐶 be the mean image of all samples. 

Let 𝐱n ∈ ℝ𝑅𝐶  be a column-vector representation of 𝑋𝑛  such that  𝐱𝐧(𝑟 ∗ 𝑅 + 𝑐) = 𝑋𝑛(𝑟, 𝑐) ,  𝑛 =
1, 2, … , 𝑁 , 𝑟 = 0, 1, … , 𝑅 − 1 , 𝑐 = 0, 1, … , 𝐶 − 1 . Assume that each face image belongs to one of K 

classes, and there are 𝑁𝑘  face images in class 𝑘, of which the mean image is �̅�𝐤 =
1

𝑁𝑘
∑ 𝐱𝐱∈𝑐𝑙𝑎𝑠𝑠 𝑘 ∈ ℝ𝑅𝐶, 

𝑘 = 1, 2, … , 𝐾. Let �̅� =
1

𝑁
∑ 𝐱𝐧

𝑁
𝑛=1 ∈ ℝ𝑅𝐶 be the mean image of all samples in a column vector form. 

 

2. 2. Scatter Matrices 

The total scatter matrix 𝑆𝑇 ∈ ℝ𝑅𝐶×𝑅𝐶 , within-class scatter matrix 𝑆𝑊 ∈ ℝ𝑅𝐶×𝑅𝐶  and between-class 

scatter matrix 𝑆𝐵 ∈ ℝ𝑅𝐶×𝑅𝐶can be defined as 

 

𝑆𝑇 = ∑ (𝐱𝐧 − �̅�)(𝐱𝐧 − �̅�)𝑡𝑁
𝑛=1                                                                                                                    (1) 

 

𝑆𝑊 = ∑ ∑ (𝐱 − �̅�𝐤)(𝐱 − �̅�𝐤)𝑡
𝐱∈𝑐𝑙𝑎𝑠𝑠 𝑘

𝐾
𝑘=1                                                                                                (2) 

 

𝑆𝐵 = ∑ 𝑁𝑘(�̅�𝐤 − �̅�)(�̅�𝐤 − �̅�)𝑡𝐾
𝑘=1                                                                                                              (3) 

 

It’s easy to verify that 𝑆𝑇 = 𝑆𝑊 + 𝑆𝐵 , and 𝑆 𝑊  and 𝑆𝐵are nonnegative definite. The rank of 𝑆𝑇 ∈
ℝ𝑅𝐶×𝑅𝐶 is the dimensionality of the range space of 𝑆𝑇, which is denoted as 𝑟𝑎𝑛𝑘(𝑆𝑇) and equal to the 

number of nonzero eigenvalues of 𝑆𝑇. If 𝑟𝑎𝑛𝑘(𝑆𝑇) = 𝑅𝐶, 𝑆𝑇  is called full-rank and it is invertible; if 

𝑟𝑎𝑛𝑘(𝑆𝑇) < 𝑅𝐶, 𝑆𝑇 is singular and have zero eigenvalues. Note that  𝑟𝑎𝑛𝑘(𝑆𝑇) ≤ 𝑁 − 1, 𝑟𝑎𝑛𝑘(𝑆𝑊) ≤
𝑁 − 𝐾 and  𝑟𝑎𝑛𝑘(𝑆𝐵) ≤ 𝐾 − 1. 

 

2. 3. Principal Component Analysis (PCA) 
PCA aims to find a set of projection vectors that map the original 𝑅𝐶-dimensional image space into a 

𝐷𝑃𝐶𝐴-dimensional feature space (𝐷𝑃𝐶𝐴 ≪ 𝑅𝐶) such that the projection of the data onto the first projection 

vector has the largest scatter, and the projection onto the second projection vector, which is orthogonal to 

the first one, has the second largest scatter, and so on. So PCA attempts to find a set of orthonormal 

eigenvectors, {𝐰𝟏, 𝐰𝟐, … ,  𝐰𝐃𝐏𝐂𝐀
} of 𝑆𝑇 , to form the projection matrix 𝑊𝑃𝐶𝐴 = [𝐰𝟏, 𝐰𝟐, … ,  𝐰𝐃𝐏𝐂𝐀

] 

corresponding to the 𝐷𝑃𝐶𝐴  largest eigenvalues, where 𝐷𝑃𝐶𝐴 is considered as the smallest number such 

that 
 ∑ λ𝑑

𝐷𝑃𝐶𝐴
𝑑=1

∑ λ𝑑
𝑅𝐶
𝑑=1

> 85%. The new feature vector 𝐲𝐧 ∈ ℝ𝐷𝑃𝐶𝐴  can be obtained by 

 
 𝐲𝑛 = 𝑊𝑃𝐶𝐴

𝑡 𝒙𝑛, 𝑛 = 1, 2, … , 𝑁               (4) 
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2. 4. Linear Discriminant Analysis (LDA) 
LDA as shown by Fisher et al. (1936) is a linear dimensionality reduction technique used for face 

recognition [Belh1997]. It aims to find the optimal set of discriminant vectors that maps the original 𝑅𝐶-

dimensional image space into a 𝐷𝐿𝐷𝐴-dimensional feature space (𝐷𝐿𝐷𝐴 ≪ 𝑅𝐶) such that images from 

different classes are more separated and images of the same class are more compact. LDA then aims to 

find a set of orthonormal projection vectors such that the first projection vector maximizes the criterion  𝐽0 

defined as 

 

 𝐽0(𝐰) =
𝐰𝑡𝑆𝐵𝐰

𝐰𝑡𝑆𝑊𝐰
                  (5) 

 

The goal of LDA becomes to find a projection matrix 𝑊𝐿𝐷𝐴 = [𝐰𝟏, 𝐰𝟐, … ,  𝐰𝐃𝐋𝐃𝐀
], where 

 

 𝑆𝐵𝐰𝐝 = 𝜆𝑑𝑆𝑊𝐰𝐝, 𝑑 = 1, 2, … , 𝐷𝐿𝐷𝐴             (6) 

 

𝐷𝐿𝐷𝐴 is considered as the smallest number such that  
∑ λ𝑑

𝐷𝐿𝐷𝐴
𝑑=1

∑ λ𝑑
𝑅𝐶
𝑑=1

> 85%. The new feature vector 𝐲𝐧 ∈

ℝ𝐷𝐿𝐷𝐴   can be obtained by  

 

 𝐲n = 𝑊𝐿𝐷𝐴
𝑡 𝐱n, 𝑛 = 1, 2, … . , 𝑁               (7) 

 

2. 5. Discussion 
LDA is usually more suitable for solving the classification task than PCA because LDA attempts to 

model the difference between the classes while PCA is good for dimensionality reduction but does not 

take class information into account. The major drawback of applying LDA for the face recognition task is 

that it may encounter the so-called small sample size (SSS) problem. It is because SW ∈ ℝRC×RC  and 

 𝑟𝑎𝑛𝑘(𝑆𝑊) ≤ 𝑁 − 𝐾. If  𝑁 < 𝑅𝐶 + 𝐾, then 𝑟𝑎𝑛𝑘(𝑆𝑊) < 𝑅𝐶, 𝑆𝑊 is singular. For example, if the size of 

an image is 112×92, then 𝑅𝐶 = 10304 but it is not practical to collect 10304+Kface images. 

 

3. Subspace LDA Methods 
 In recent years, many researchers have noticed the SSS problem and tried to tackle it using different 

approaches. The following four subspace LDA methods begin with the projection with  𝐲n = 𝑊𝑃𝐶𝐴
𝑡 𝐱n by 

PCA as defined in (4) for the first stage of a two-stage framework. Second, it applies the LDA-based 

algorithm in the reduced subspace to get the optimal projection matrix which will be discussed as follows. 

 

3. 1. Fisherface 
Among all of the subspace LDA methods proposed over the last few decades, the Fisherface 

proposed by Belhumeur et al. (1997) has attracted much attention. The projection matrix is computed 

according to the notations given in Section 2. We compute  𝑆𝐵
′ = 𝑊𝑃𝐶𝐴

𝑡 𝑆𝐵𝑊𝑃𝐶𝐴 ∈ ℝ𝐷𝑃𝐶𝐴×𝐷𝑃𝐶𝐴  and the 

within-class scatter matrix 𝑆𝑊
′ = 𝑊𝑃𝐶𝐴

𝑡 𝑆𝑊𝑊𝑃𝐶𝐴 ∈ ℝ𝐷𝑃𝐶𝐴×𝐷𝑃𝐶𝐴  in the reduced subspace. Construct the 

projection matrix 𝑊𝐿𝐷𝐴 = [𝐰𝟏
𝐋𝐃𝐀, 𝐰𝟐

𝐋𝐃𝐀, … , 𝐰𝐃𝐋𝐃𝐀

𝐋𝐃𝐀 ] by solving the generalized eigenvalue problem: 

 

 𝑆𝐵
′ 𝐰d

LDA = 𝜆𝑑𝑆𝑊
′ 𝐰d

LDA, 𝑑 = 1, 2, … , 𝐷𝐿𝐷𝐴                                                (8) 

  

where 𝐰d
LDAdenotes the eigenvector corresponding to the 𝑑-th largest eigenvalue 𝜆𝑑 . The optimal 

projection matrix 𝑊𝑂𝑃𝑇 ∈ ℝ𝑅𝐶×𝐷𝐿𝐷𝐴  and a reduced face feature vector  𝐲𝐧 ∈ ℝ𝐷𝐿𝐷𝐴  are given as follows. 

 

 𝑊𝑂𝑃𝑇
𝑡 = 𝑊𝐿𝐷𝐴

𝑡 𝑊𝑃𝐶𝐴
𝑡                  (9) 
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 𝐲𝑛 = 𝑊𝑂𝑃𝑇
𝑡 𝐱𝑛, 𝑛 = 1, 2, … , 𝑁.                                                                                              (10) 

 
3. 2. Complete PCA plus LDA 

The Complete PCA plus LDA as shown by Yang et al. (2003) was suggested to give a theoretically 

optimal and more efficient algorithm that can overcome the weaknesses of the Fisherface mentioned 

above. Let 𝐷𝑐𝑜𝑚 = 𝑟𝑎𝑛𝑘(𝑆𝑇) . We first find the orthonormal eigenvectors of 𝑆𝑇  to construct the 

projection matrix   𝑊𝑐𝑜𝑚 = [𝐰𝟏
𝐜𝐨𝐦, 𝐰𝟐

𝐜𝐨𝐦, … , 𝐰𝐃𝐜𝐨𝐦
𝐜𝐨𝐦 ], then compute the between-class scatter matrix 

𝑆𝐵
′ = 𝑊𝑐𝑜𝑚

𝑡 𝑆𝐵𝑊𝑐𝑜𝑚 ∈ ℝ𝐷𝑐𝑜𝑚×𝐷𝑐𝑜𝑚 , the within-class scatter matrix 𝑆𝑊
′ = 𝑊𝑐𝑜𝑚

𝑡 𝑆𝑊𝑊𝑐𝑜𝑚 ∈
ℝ𝐷𝑐𝑜𝑚×𝐷𝑐𝑜𝑚 ,  and the total scatter matrix 𝑆𝑇

′ = 𝑊𝑐𝑜𝑚
𝑡 𝑆𝑇𝑊𝑐𝑜𝑚 ∈ ℝ𝐷𝑐𝑜𝑚×𝐷𝑐𝑜𝑚   in the reduced subspace. 

Let 𝐷𝑖𝑠𝑜 = 𝑟𝑎𝑛𝑘(𝑆𝑊
′ ). In the 𝐷𝑐𝑜𝑚-dimensional transformed space, let {𝐰𝟏

𝐢𝐬𝐨 , 𝐰𝟐
𝐢𝐬𝐨, … , 𝐰𝐃𝐜𝐨𝐦

𝐢𝐬𝐨 } be a set of 

all orthonormal eigenvectors of 𝑆𝑊
′ . Denote  �̃�𝑖𝑠𝑜 = [𝐰𝟏

𝐢𝐬𝐨, … , 𝐰𝐃𝐢𝐬𝐨

𝐢𝐬𝐨 ] and �̂�𝑖𝑠𝑜 = [𝐰𝐃𝐢𝐬𝐨+𝟏
𝐢𝐬𝐨 , … , 𝐰𝐃𝐜𝐨𝐦

𝐢𝐬𝐨 ] . 

Let �̂� = 𝑟𝑎𝑛𝑘(𝑆𝐵
′ ) .Let �̃�𝐵 = �̃�𝑖𝑠𝑜

𝑡 𝑆𝐵
′ �̃�𝑖𝑠𝑜 ∈ ℝ𝐷𝑖𝑠𝑜×𝐷𝑖𝑠𝑜 , �̃�𝑊 = �̃�𝑖𝑠𝑜

𝑡 𝑆𝑊
′ �̃�𝑖𝑠𝑜 ∈ ℝ𝐷𝑖𝑠𝑜×𝐷𝑖𝑠𝑜 . Construct the 

projection matrix�̃� = [�̃�𝟏, �̃�𝟐, … , �̃��̂�] by solving the generalized eigenvalue problem 

 

 �̃�𝐵�̃�𝐝 = 𝜆𝑑�̃�𝑊�̃�𝐝, 𝑑 = 1, 2, … , �̂�              (11) 

 

 Let �̂�𝐵 = �̂�𝑖𝑠𝑜
𝑇 𝑆𝐵

′ �̂�𝑖𝑠𝑜 ∈ ℝ(𝐷𝑐𝑜𝑚−𝐷𝑖𝑠𝑜)×(𝐷𝑐𝑜𝑚−𝐷𝑖𝑠𝑜) . Find the orthonormal eigenvectors of �̂�𝐵  to 

construct the orthogonal matrix    �̂� = [�̂�𝟏, �̂�𝟐, … , �̂��̂�] . The projection matrix  𝑊𝑂𝑃𝑇 ∈ ℝ𝑅𝐶×2�̂� and a 

reduced feature vector  𝐲𝐧 ∈ ℝ2�̂� are obtained by  

 

 𝑊𝑂𝑃𝑇 = 𝑊𝑐𝑜𝑚 × [�̂�𝑖𝑠𝑜�̂�,  �̃�𝑖𝑠𝑜�̃�]              (12) 

 

 𝐲𝑛 = 𝑊𝑂𝑃𝑇 
𝑡 𝐱𝑛, 𝑛 = 1, 2, … , 𝑁.                                                                                               (13) 

 

3. 3. IDAface 
The improved discriminate analysis (IDAface) proposed by Zhuang et al. (2007) is a two-stage 

framework. First, a modified PCA, called PCA with selection (PCA_S), is used for dimensionality 

reduction. Second, the algorithm uses inverse Fisher discriminant analysis (IFDA) which introduces a 

new criterion to derive the discriminative information from both range space and null space of within-

class scatter matrix. The inverse Fisher discriminant criterion is defined as 

 

𝒘 = arg min
𝑊

|𝑊𝑡𝑆𝑊𝑊|

|𝑊𝑡𝑆𝐵𝑊|
                                                                                                     (14) 

 

 Let 𝑝 = 𝑟𝑎𝑛𝑘(𝑆𝑇). Select the orthonormal eigenvectors of 𝑆𝑇 corresponding to p eigenvalues, which 

satisfy the inequality 𝐰𝑡𝑆𝐵𝐰 > 𝐰𝑡𝑆𝑊  to form the projection matrix  𝑊𝑃𝐶𝐴_𝑆 = [𝐰𝟏, 𝐰𝟐   … , 𝐰𝐃𝐏𝐂𝐀_𝐒
] ∈

ℝ𝑅𝐶×𝐷𝑃𝐶𝐴_𝑆, where  𝐷𝑃𝐶𝐴_𝑆 ≤ 𝐾 − 1. 

 Calculate the between-class scatter matrix 𝑆𝐵
′ ∈ ℝ𝐷𝑃𝐶𝐴_𝑆×𝐷𝑃𝐶𝐴_𝑆   by 𝑆𝐵

′ = 𝑊𝑃𝐶𝐴_𝑆
𝑡 𝑆𝐵𝑊𝑃𝐶𝐴_𝑆 . Let 

 𝐷𝑝𝑟𝑜𝑗 = 𝑟𝑎𝑛𝑘(𝑆𝐵
′ ) . Work out the orthonormal eigenvectors of 𝑆𝐵

′  to construct the projection 

matrix   𝑊𝑝𝑟𝑜𝑗 = [𝐰𝟏
𝐩𝐫𝐨𝐣

, 𝐰𝟐
𝐩𝐫𝐨𝐣

, … , 𝐰𝐃𝐩𝐫𝐨𝐣

𝐩𝐫𝐨𝐣
] ∈ ℝ𝐷𝑃𝐶𝐴_𝑆×𝐷𝑝𝑟𝑜𝑗 , where 𝐰𝐝

𝐩𝐫𝐨𝐣
 denotes the eigenvector 

corresponding to the 𝑑-th largest positive eigenvalue of  𝑆𝐵
′ , 𝑑 = 1, 2, … , 𝐷𝑝𝑟𝑜𝑗. Calculate the between-

class scatter matrix 𝑆𝐵
′′ ∈ ℝ𝐷𝑝𝑟𝑜𝑗×𝐷𝑝𝑟𝑜𝑗 and the within-class scatter matrix 𝑆𝑊

′′ ∈ ℝ𝐷𝑝𝑟𝑜𝑗×𝐷𝑝𝑟𝑜𝑗 by 

 

 𝑆𝐵
′′ = 𝑊𝑝𝑟𝑜𝑗

𝑡 𝑆𝐵
′ 𝑊𝑝𝑟𝑜𝑗                                                                                                        (15) 

 

 𝑆𝑊
′′ = 𝑊𝑝𝑟𝑜𝑗

𝑡 𝑊𝑃𝐶𝐴𝑆

𝑡 𝑆𝑊𝑊𝑃𝐶𝐴𝑆
𝑊𝑝𝑟𝑜𝑗              (16) 
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Adopt the optimization problem using the inverse Fisher discriminant criterion, we have 

 𝑊𝐼𝐹𝐷𝐴 = arg min
𝑊

|𝑊𝑡𝑊𝑝𝑟𝑜𝑗
𝑡 𝑊𝑃𝐶𝐴𝑆

𝑡 𝑆𝑊𝑊𝑃𝐶𝐴𝑆
𝑊𝑝𝑟𝑜𝑗𝑊|

|𝑊𝑡𝑊𝑝𝑟𝑜𝑗
𝑡 𝑊𝑃𝐶𝐴𝑆

𝑡 𝑆𝐵𝑊𝑃𝐶𝐴𝑆
𝑊𝑝𝑟𝑜𝑗𝑊|

 

          = arg min
𝑊

|𝑊𝑡𝑊𝑝𝑟𝑜𝑗
𝑡 𝑆𝑊

′ 𝑊𝑝𝑟𝑜𝑗𝑊|

|𝑊𝑡𝑊𝑝𝑟𝑜𝑗
𝑡 𝑆𝐵

′ 𝑊𝑝𝑟𝑜𝑗𝑊|
= arg min

𝑊

|𝑊𝑡𝑆𝑊
′′ 𝑊|

|𝑊𝑡𝑆𝐵
′′𝑊|

                                                          (17) 

 

Obtain 𝑊𝐼𝐹𝐷𝐴 = [𝐰𝟏 ,𝐰𝟐,   … , 𝐰𝐃𝐩𝐫𝐨𝐣
] ∈ ℝ𝐷𝑝𝑟𝑜𝑗×𝐷𝑝𝑟𝑜𝑗  by solving the generalized eigenvalue problem 

 

 𝑆𝑊
′′ 𝐰𝐝 = 𝜆𝑑𝑆𝐵

′′𝐰𝐝 , 𝑑 = 1, 2, … , 𝐷𝑝𝑟𝑜𝑗             (18) 

 
where  𝒘𝑑 is the generalized eigenvector corresponding to the 𝑑-th smallest generalized eigenvalue 

𝜆𝑑 . 

 Compute the optimal projection matrix 𝑊𝑂𝑃𝑇 ∈ ℝ𝑅𝐶×𝐷𝑝𝑟𝑜𝑗  and a reduced vector  𝐲𝐧 ∈ ℝ𝐷𝑝𝑟𝑜𝑗  as 

follows 

 

 𝑊𝑂𝑃𝑇
𝑡 = 𝑊𝐼𝐹𝐷𝐴

𝑡 𝑊𝑝𝑟𝑜𝑗
𝑡 𝑊𝑃𝐶𝐴_𝑆

𝑡                (19) 

 

𝐲𝑛 = 𝑊𝑂𝑃𝑇
𝑡 𝐱𝑛, 𝑛 = 1, 2, … , 𝑁.                                                                                          (20) 

 

3. 4. BDPCA plus LDA  
Bi-Directional PCA (BDPCA) proposed by Zuo et al. (2006) is a generalization of two-dimensional 

principal component analysis (2DPCA) as shown by Yang et al. (2004), which directly computes 

eigenvectors of the scatter matrix without converting 2D matrices into 1D vectors. Rather than working in 

the row direction of an image like 2DPCA, BDPCA can reflect information between both rows and 

columns of an image. The BDPCA plus LDA performs LDA in the low-dimensional BDPCA subspace. 

The detailed algorithm and further discussion is given as follows. 

 

3. 4. 1. Algorithm 

(S1) (BDPCA): Construct the row total scatter matrix 𝑆𝑇
𝑟𝑜𝑤 ∈ ℝ𝐶×𝐶 and the column total scatter 

matrix  𝑆𝑇
𝑐𝑜𝑙 ∈ ℝ𝑅×𝑅  by 

 

     𝑆𝑇
𝑟𝑜𝑤 =

1

𝑁𝑅
∑ (𝑋𝑛 − �̅�)𝑡(𝑋𝑛 − �̅�),𝑁

𝑛=1   𝑆𝑇
𝑐𝑜𝑙 =

1

𝑁𝐶
∑ (𝑋𝑛 − �̅�)𝑁

𝑛=1 (𝑋𝑛 − �̅�)𝑡                          (21) 

 

Find the projection matrix  𝑊𝑟𝑜𝑤 = [𝐰𝟏
𝐫𝐨𝐰, 𝐰𝟐

𝐫𝐨𝐰, … 𝐰𝐃𝐫𝐨𝐰

𝐫𝐨𝐰 ]  and 𝑊𝑐𝑜𝑙 = [𝐰𝟏
𝐜𝐨𝐥, 𝐰𝟐

𝐜𝐨𝐥, … 𝐰𝐃𝐜𝐨𝐥

𝐜𝐨𝐥 ]  

according to the largest eigenvalues of  𝑆𝑇
𝑟𝑜𝑤and 𝑆𝑇

𝑐𝑜𝑙, respectively. 

(S2) (BDPCA feature extraction): 

Obtain BDPCA feature matrix 𝑌𝑛
𝐵𝐷𝑃𝐶𝐴 ∈ ℝ𝐷𝑐𝑜𝑙×𝐷𝑟𝑜𝑤 of image matrix 𝑋𝑛 (𝑛 = 1, 2, … , 𝑁) by 

 

 𝑌𝑛
𝐵𝐷𝑃𝐶𝐴 = 𝑊𝑐𝑜𝑙

𝑡 𝑋𝑛𝑊𝑟𝑜𝑤                 (22) 

 

Let 𝐲𝐧
𝐁𝐃𝐏𝐂𝐀 ∈ ℝ𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤 be a column-vector representation of 𝑌𝑛

𝐵𝐷𝑃𝐶𝐴  such that 𝐲𝐧
𝐁𝐃𝐏𝐂𝐀 (𝑟 ∗ 𝐷𝑟𝑜𝑤 +

𝑐) = 𝑌𝑛
𝐵𝐷𝑃𝐶𝐴 (𝑟, 𝑐) ,  𝑛 = 1, 2, … , 𝑁 , 𝑟 = 0, 1, … , 𝐷𝑟𝑜𝑤 − 1 , 𝑐 = 0, 1, … , 𝐷𝑐𝑜𝑙 − 1 . Compute the mean 

image of class 𝑘 : �̅�𝐤
𝐁𝐃𝐏𝐂𝐀 =

1

𝑁𝑘
∑ 𝐲𝐁𝐃𝐏𝐂𝐀 

𝐲𝐁𝐃𝐏𝐂𝐀 ∈𝑐𝑙𝑎𝑠𝑠 𝑘 , 𝑘 = 1, 2, … , 𝐾 , and the mean image of all 

samples:  �̅�𝐁𝐃𝐏𝐂𝐀 =
1

𝑁
∑ 𝐲𝐧

𝐁𝐃𝐏𝐂𝐀 𝑁
𝑛=1 . 
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(S3) (LDA): Constructthe between-class scatter matrix 𝑆𝐵
𝐵𝐷𝑃𝐶𝐴 ∈ ℝ𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤×𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤 and the within-

class scatter matrix𝑆𝑊
𝐵𝐷𝑃𝐶𝐴 ∈ ℝ𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤×𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤in the BDPCA subspace by 

 

 𝑆𝐵
𝐵𝐷𝑃𝐶𝐴 = ∑ 𝑁𝑘(�̅�𝐤

𝐁𝐃𝐏𝐂𝐀 − �̅�𝐁𝐃𝐏𝐂𝐀 )(�̅�𝐤
𝐁𝐃𝐏𝐂𝐀 − �̅�𝐁𝐃𝐏𝐂𝐀 )𝑡𝐾

𝑘=1         (23) 

 

 𝑆𝑊
𝐵𝐷𝑃𝐶𝐴 = ∑ ∑ (𝐲𝐁𝐃𝐏𝐂𝐀 − �̅�𝐤

𝐁𝐃𝐏𝐂𝐀 )(𝐲𝐁𝐃𝐏𝐂𝐀 − �̅�𝐤
𝐁𝐃𝐏𝐂𝐀 )𝑡

𝐲𝐁𝐃𝐏𝐂𝐀 ∈𝑐𝑙𝑎𝑠𝑠 𝑘
𝐾
𝑘=1      (24) 

 

 Let 𝐷𝐿𝐷𝐴 = 𝑟𝑎𝑛𝑘(𝑆𝐵
𝐵𝐷𝑃𝐶𝐴),  find the projection matrix   𝑊𝑂𝑃𝑇 = [𝐰𝟏,𝐰𝟐, … , 𝐰𝐃𝐋𝐃𝐀

] ∈

ℝ𝐷𝑐𝑜𝑙𝐷𝑟𝑜𝑤×𝐷𝐿𝐷𝐴  by solving the generalized eigenvalue problem 

 

 𝑆𝐵
𝐵𝐷𝑃𝐶𝐴 𝐰𝑑 = 𝜆𝑑𝑆𝑊

𝐵𝐷𝑃𝐶𝐴 𝐰𝑑 , 𝑑 = 1, 2, … , 𝐷𝐿𝐷𝐴           (25) 

 

(S4) (Feature representation):  

 The final feature vector 𝐲𝑛 ∈ ℝ𝐷𝐿𝐷𝐴  is defined by  

 

𝐲𝑛 = 𝑊𝑂𝑃𝑇
𝑡 𝐲𝑛

𝐁𝐃𝐏𝐂𝐀 , 𝑛 = 1, 2, … , 𝑁.                                                                                 (26) 

 

4. Experiments 
The experiments were carried out using three face databases: the JAFFE database (Web-1) as shown 

by Lyons et al. (1998), the ORL database (Web-2) as shown by Samaria et al. (1994) and the FEI 

database (Web-3). The specifications for each of the face databases are further described below. 

 

4. 1. 1. The JAFFE Database  
The JAFFE database is a Japanese face data base which consists of 213 face images from 10 females. 

There are seven different facial expressions. Each individual has two to four images for each expression. 

All individuals are in an upright, front position. The original size of each image is 256×256 with 256 

possible gray levels for each pixel. In our experiments, we cropped and resized them to 112×92 pixels. 

Only one image per facial expression was selected for one individual, so there are 7 images per individual 

and 70 images in total. The seven images of one individual are shown in Fig. 1. 

 

 
Fig.1. Sample images from the JAFFE database 

 

4. 1. 2. The ORL Database  
The ORL database consists of 400 face images from 40 individuals, including 36 males and 4 

females. Each contributes 10 different images. Some images were taken at different sessions, and there 

are variations in facial expressions and facial details. All the images were taken against a dark 

homogenous background with the individuals in an upright, front position (with a tolerance for tilting and 

rotation of the face up to 20 degrees).The size of each image is 112×92 with 256 possible gray levels for 

each pixel, we resized them to 56×46 pixels. The ten images of one individual from the ORL database are 

shown in Fig. 2. 

 

 
Fig. 2.Sample images from the ORL database 
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4. 1. 3. The FEI Database  
The FEI face database is a Brazilian face database that contains 2800 face images from 200 

individuals, including 100 males and 100 females. Each contributes 14 images. All images are colorful 

and taken against a white homogenous background in an upright frontal position with an individual 

having rotation of up to 180 degrees. Scale might vary about 10% and the original size of each image is 

640x480. In our experiments, we cropped and resized them to 56×46 pixels, and converted them to 256 

gray levels. Only first 11 images in different rotation degrees were selected from each individual, so there 

are 2200 images in total. The eleven images of one individual used in the experiments from the FEI are 

shown in Fig. 3. 

 

 

Fig. 3. Sample images from the FEI database 

The information of images used in the experiments from three face databases are summarized in 

Table 1. 

Table 1. A summary of the face databases 

Name 

Image 

Size 

(pixels) 

Number Variations 

Total 

images 

Images/in

dividual 

Individ

uals 

Male/ 

Female 

Expres

sion 

Facial 

details 

Illumina

tion 
Pose 

JAFFE 112×92 70 7 10 0 / 7 Yes No No No 

ORL 56×46 400 10 40 36 / 4 Yes Yes No Yes 

FEI 56×46 2200 11 200 100 / 100 No No No Yes 

 

4. 2. Performance Evaluation 
We evaluated the performance of the subspace LDA methods on the aforementioned databases. The 

Euclidean distance and the nearest neighbour classifier is adopted. The recognition rate is calculated as 

the ratio of number of successful recognition and the total number of test images. We tested under 

different number of images per individual by splitting all images of each class into two subsets, such that 

there are 𝑘 imagesper individual in training sets and the remaining  
𝑁

𝐾
− 𝑘 images per individual are in the 

testing sets, 𝑘 = 1, … ,
𝑁

𝐾
− 1. We tried all possible splits and report the average recognition rate for each 

database. All the experiments were carried out on an Intel Core i3-2100 computer with an 8GB RAM and 

tested on a Matlab platform (version: R2012b). The results are given in Tables 2 to 4. 

 

Table 2. Recognition rates (%) of the subspace LDA methods on the JAFFE database 

Subspace LDA methods 
Size of  

the images 

Number of training images per individual 

1 2 3 4 5 6 

a. Fisherface 112 x 92 N/A 88.6 96.0 99.5 100 100 

b. Complete PCA plus LDA 112 x 92 82.1 91.7 95.8 99.3 100 100 

c. IDAface 112 x 92 82.1 88.8 90.0 96.4 98.8 98.8 

d. BDPCA plus LDA 112 x 92 78.6 81.8 91.6 98.9 100 100 
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Table 3. Recognition rates (%) of LDA and the subspace LDA methods on the ORL database 

Methods 
Number of training images per individual 

1 2 3 4 5 6 7 8 9 

Fisherface N/A 78.2 87.5 90.7 92.6 93.5 98.9 99.0 100 

Complete PCA plus LDA 73.6 85.8 92.0 94.7 96.4 97.4 99.6 99.8 100 

IDAface 73.6 78.5 87.1 91.2 93.5 94.8 99.3 99.6 100 

BDPCA plus LDA 76.4 86.3 92.2 95.3 96.8 97.9 99.7 99.9 100 

LDA N/A 55.9 57.1 60.4 66.5 74.4 97.0 99.0 100 

 

Table 4. Recognition rates (%) of LDA and the subspace LDA methods on the FEI database 

Subspace LDA methods 
Number of training images per individual 

1 2 3 4 5 6 7 8 9 10 

Fisherface N/A 41.8 51.4 55.9 58.1 59.4 59.8 91.1 97.6 96.4 

Complete PCA plus LDA 44.2 68.0 78.6 82.6 84.4 85.0 84.7 96.6 99.2 98.8 

IDAface 44.2 46.0 65.5 67.0 67.9 68.1 67.9 92.9 98.0 98.0 

BDPCA plus LDA 54.8 75.8 85.9 90.9 93.8 95.5 96.5 99.4 99.9 100 

LDA N/A 39.0 45.7 48.3 50.3 51.4 52.0 88.1 94.7 95.8 

 

4. Conclusion 
We have discussed the LDA and four subspace LDA methods for solving the small sample size 

problem encountered in face recognition. Experimental results, by testing on three well-known face image 

databases: JAFFE(Web-1), ORL(Web-2), and FEI(Web-3), show that the LDA method directly converts 

a 2d image into a larger column vector perform the worst. On the other hand, the BDPCA plus LDA 

method applies both row and column projection to reduce the size of matrix achieves the overall best 

results, whereas, the size selection of subspace projection by either PCA or LDA merits further studies. 
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