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ABSTRACT 

 

Most gray images don’t always require an 8-bit representation for each pixel; in particular, a 

pixel of texture images may even be coded in no more than 5 bits (32 gray levels). Adequately 

enough it is probable that between 16 to 32 levels of gray could be a suitable threshold for most 

gray level texture image representation, before the image shows signs of false contouring or any 

notable rough edges. This research uses a variety of texture images that have been re-quantized 

according to histogram equalization: a methodology that increases the contrast of an image by 

using the image’s histogram. All the data gathered were from a survey conducted by 50 

independent test subjects. A nonparametric sign test indicates that 8 levels would be enough to 

encode a gray texture image for most of the test images from Brodatz’ album. 

 

Keywords:  Histogram Equalization, PSNR, Sign Test, Texture Images. 

 

 

 

 

 



 

2 

1. Introduction 

The field of digital image processing refers to the processing of digital image by means of a 

digital computer. Hence, two of the major driving forces of interest in digital image processing 

methods are: improving image data for human interpretation, and processing image data for 

storage, transmission and representation for machine vision (Gonzalez and Woods, 2002). 

Digital images exist everywhere, each of which can be defined as a function f(x, y) in 

{0,1, …,255} – with x and y being spatial coordinates.  

Digital images are composed of finite number of elements (pixels), and in many machine vision 

and image processing methods, assumptions are made about the uniformity of intensities (of 

these pixels) in local image regions (Chen and Pau, 1999). Many real world images do not 

exhibit regions of uniform intensities. For example, the image of a wooden surface (texture) is 

not uniform but contains variations of intensities which form certain repeated patterns called 

visual primitives. The patterns are a result of physical surface properties such as roughness or 

oriented strands which often have a tactile quality, or they could be the result of reflectance 

differences such as the color on a surface or light.  

Texture is a ubiquitous visual experience and a very important characteristic of a digital image. It 

has been used in various applications, such as carpet quality control, region recognition in 

satellite images, and body painting control in the vehicle industry (Chen and Chen, 1999; Chen 

and Chen, 2003). Moreover, one defining factor of texture images is that it exhibits a spatial 

distribution of gray values (gray levels). The term gray level generally describes the 

monochromatic intensity of an image because it ranges from black to gray and finally white. 

Depending on the acquisition method of a texture image, an image may exhibit various levels of 

contrast and require modification for better interpretation. For example, in medical x-ray images 

of bones, images are sometimes required to be intensified for better clarification. Such 

modifications can be applied to an image by the use of histogram equalization.  

The remainder of this work is organized as follows. Section 2 reviews histogram equalization, 

Section 3 presents the method and experiment conducted for this work. Section 4 describes the 

analysis and results of the experiment, and lastly Section 5 summarizes the overall work with a 

given conclusion.  
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2. Histogram Equalization 

 

The goal of histogram equalization is to obtain a uniform histogram for the output image; this 

transformation is achieved by employing a monotonic, non-linear mapping which re-assigns the 

intensity values of pixels in the input image such that the output image contains a uniform 

distribution of intensities (Histogram, 2009). In other words, this allows for areas of lower local 

contrast to gain a higher contrast without affecting the global contrast. Histogram equalization 

accomplishes this by effectively spreading out the most frequent intensity values, thus the 

intensities can be better distributed on the histogram (Histogram, 2009). In addition, because of 

its effectiveness in detail enhancement this technique is used in image compression processes 

and in the correction of non-linear effects introduced by digitizers or various display systems. 

2.1. Histogram Equalization Process 

Histogram equalization is usually introduced using continuous, rather than discrete, process 

functions. As a result, we will consider for a brief moment continuous functions, where  

represents the gray levels of the image to be enhanced (Gonzalez and Woods, 2002). Therefore, 

we assume that the images contain continuous intensity levels (in the interval ) with 

representing black and  representing white (Histogram, 2009). Subsequently, we will 

look at a discrete formulation which will allow pixel values to be within the interval  .  

We now look at the transformation function of the form 

   

for any within the aforementioned interval this formula produces a level for each pixel  in 

the original image. Figure 1 shows an example of the pixel distribution using a -distribution. 

To be successfully implemented we will assume that the transformation function  satisfies 

the following two conditions. 

1.)  is single-valued and monotonically increasing within the interval   and 

2.)  
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The first condition needs to be single-valued since we need to ensure that the inverse 

transformation exists. The reason for its monotonicity condition is to control the increasing order 

from black to white in the output image. The latter condition is to guarantee that the output gray 

levels will be in the same range as the input gray levels (Gonzalez and Woods, 2002). If the 

transformation function was not monotonically increasing then we would have only a section of 

the intensity range being inverted. Therefore, we can denote the inverse transformation function 

from  back to  as 

. 

Gray levels in an image can be viewed as random variables within [0, 1], to describe these 

random variables we use their probability density functions (P.D.F). Let,  and  denote 

the P.D.F of random variables  and  respectively. If  and  are known and  

satisfies condition (1), then the P.D.F function  of the transformed variable  can be 

obtained by 

 

This function shows that the probability density function of the transformed variable, , is 

determined by the gray level P.D.F of the input image and also by the chosen transformation 

function (Gonzalez and Woods, 2009).  Therefore, the transformation function, for 

histogram equalization is:  

 

which is called the cumulative distribution function (C.D.F) of random variable . 

Figure 1 shows a distribution with degrees of freedom 4 using the aforementioned C.D.F. 

along with the P.D.F function below. 
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Figure 1: -Distribution with degrees of freedom 4. 

 

For a discrete gray image, a pixel ri takes one of L discrete values. The probability of occurrence 

of gray level  in an image is approximated by  

 

where  is the total number of pixels in the image,  is the number of pixels that have gray level 

 and  is the total possible gray levels in the image.  Furthermore,  

 

Hence, the output image is obtained by mapping each pixel with level  in the input image into a 

matching pixel with level  in the output image using the equation above. 
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3. Methodology 

 

The goal of our research is to be able to find and calculate the minimum adequate number of 

levels we require to represent an image. To achieve this, we devised a simple experiment to 

collect the necessary data; the methodology includes a basic survey (data acquisition) and 

statistical analysis (of acquired data) to calculate the actual number of gray levels. In this section 

we will look at how that experiment was set up for data acquisition. 

3.1. Data Acquisition Process 

First and foremost, before we actually started conducting the survey to collect the necessary data 

we had to decide which images and levels of gray we would actually use for this experiment. As 

we know texture is one of the important characteristics of a digital image thus deciding which 

images to use is important, since not all the images were of high quality (i.e. contrast difference).  

This experiment used images that have been digitally scanned from (Brodatz, 1966), a total of 80 

images were used. All the images were gray intensity images with 512 x 512 in dimension as 

shown in Figure 2 below.  

 

 

 

We well know that images don’t necessarily require an 8-bit representation; sufficiently enough 

they can be coded in 5 bits (32 gray levels) representation; hence, the reason for this 

experimental survey. Each of the original images (80 images) as shown in Figure 2 above, is 

originally coded in an 8-bit representation (256 gray levels). This experiment looks at 3 other 

distinct bit representations of these images, in other words, each of the 80 images where re-coded 

in 3-bit (8 levels), 4-bit (16 levels) and 5-bit (32 levels) representation. This result was achieved 

using the aforementioned histogram equalization method in Chapter 2. Thus each image was 

parsed by the equalization program and converted to its respective bit representation (3, 4, 5 bits); 

the end result was displayed using 4 different bit representations as shown in Figure 3 below.    

Figure 2: Images from Brodatz (Brodatz, 1966) 
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As seen in the Figure 3 above, we can easily have a clear overview of all images; however, one 

cannot instantaneously note the difference among each image. Keep in mind that 3 of the images 

have been altered using the histogram equalization process. In order to successfully execute this 

experimental survey, each test subject (student) was shown all 80 images in a slide show. 

However, each test subject was only given 5-6 seconds to view each set of images, their main 

purpose in this survey was to see if they could distinguish any real significant difference among 

the 3 images from the original. A simple answer sheet was provided to each subject to write 

down their corresponding answer. Basically, the answers included Y (Yes) if any significant 

difference was noted, N (No) if no difference was noted, and X for not being able to distinguish 

any difference or being uncertain. Figure 4 below shows the answer sheet used in this survey; 

note the square figures in the answer sheet are a reflection of how the images were set up in the 

slide show. Notice that each square figure is properly labeled in accordance to how the images 

appeared in the slide show. Also, each of the square figures on the answer sheet has an O; this 

shows the test subjects that, that particular image is in fact the original images that they must use 

as comparison to the other 3 images.  Finally, the sample size for this experimental survey was a 

total of 50 test subjects. After all the data had been collected it was analyzed and tabulated in a 

spread sheet, each of the answers (i.e. Y or N) were tabulated as 1 or 0 respectively and -1 for X 

(uncertain answer); a sample is shown in Figure 5. 

Figure 3: Image Samples of D01, D02, D05, Mandrill, Lenna, and D25 with varied bit 
representations (a) Original image 8 bit, (b) 3 bit (c) 4 bit and (d) 5 bit 

a b 

c d 
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     ID: __________________________        ANSWER SHEET 

 O 

Image 5: D05.raw 

 O 

Image 6: D06.raw

 O 

Image 7: D07.raw

 O 

Image 8: D08.raw 

 O 

Image 1: D01.raw 

 O 

Image 2: D02.raw

O 

Image 3: D03.raw

O 

Image 4: D04.raw 

 O 

Image 9: D09.raw 

 O 

Image 10: D10.raw

O 

Image 11: D11.raw

O 

Image 12: D12.raw 

 O 

Image 13: D13.raw 

 O 

Image 14: D14.raw

O 

Image 15: D15.raw

O 

Image 16: D16.raw 

 O 

Image 17: D17.raw 

 O 

Image 18: D18.raw

 O 

Image 19: D19.raw

 O 

Image 20: D20.raw 

 O 

Image 21: D21.raw 

 O 

Image 22: D22.raw

 O 

Image 23: D23.raw

 O 

Image 24: D24.raw 

Figure 4: Answer Sheet Sample 
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TEST 
SUBJECT  IMAGE ID 

3 Bit 
(L=8) 

4 Bit 
(L=16) 

5 Bit 
(L=32) 

1  D01: Woven aluminum wire   0  1  ‐1 
1  D02:Fieldstone  0  1  1 
1  D03:Reptile skin   1  1  ‐1 
1  D04:Pressed Cork  0  1  1 
1  D05:Expanded mica  1  0  1 
1  D06:Woven aluminum wire  0  1  1 
1  D07:Fieldstone  0  1  1 
1  D08:Absolute illusion of woven wire  0  0  1 
1  D09:Grass lawn   0  0  1 
1  D10:Crocodile skin   1  0  0 
1  D11:Homespun woolen cloth  0  1  0 
1  D12:Bark of tree   0  0  1 
1  D13:Bark of tree   0  1  1 
1  D14:Woven aluminum wire   0  0  1 
1  D15:Straw   0  0  1 
1  D16:Herringborn weave   0  1  1 
1  D17:Herringborn weave   0  1  0 
1  D18:Raffia weave  0  1  1 
1  D19:Woolen cloth  1  1  0 
1  D20:French canvas  1  0  0 
1  D21:French canvas  0  1  ‐1 
1  D22:Reptile skin    1  0  1 
1  D23:Beach pebbles  0  0  1 
1  D24:Calf Leather  0  0  1 
1  D89:Dry hop flowers  0  0  1 
1  D26:Ceramic‐coated brick wall  0  1  1 
1  D27:Beach sand and pebbles ‐ translucent effect  0  0  1 
1  D28:Beach sand  0  1  1 
1  D29:Beach sand  0  0  1 
1  D30: Beach pebbles ‐ translucent effect   0  1  0 
1  D31:Beach pebbles with hard, dry appearance  0  1  0 
1  D79:Oriental grass fiber cloth  0  0  1 
1  D88:Dry hop flowers  0  1  1 
1  D90:Clouds  0  1  1 
1  D35:Lizard skin  1  0  0 
1  D36:Lizard skin   0  0  1 
1  D37: Water   0  1  0 
1  D38:Water   0  0  1 
1  D39:Lace  0  1  1 
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Figure 5: Images used in survey 

1  D40:Lace  1  1  1 
1  D41:Lace  0  1  1 
1  D42:Lace   0  1  1 
1  D43:Varied swinging of light bulb on a length of wire  0  1  1 
1  D44:Swinging lights in a darkened room   0  1  1 
1  D45:Abstract effect of swinging light  0  1  1 
1  D46:Woven brass mesh  0  1  0 
1  D47:Woven brass mesh  0  1  0 
1  D48:Perforated masonite panel  1  1  0 
1  D49:Straw screening  0  0  1 
1  D50:Raffia woven with cotton threads  0  0  1 
1  D51:Raffia woven with cotton threads  1  0  1 
1  D52:Oriental straw cloth  0  1  1 
1  D53:Oriental straw cloth  0  1  0 
1  D54:Beach pebbles  0  1  0 
1  D55:Straw matting   0  0  1 
1  D56:Straw matting  1  0  1 
1  D57:Handmade paper  0  0  1 
1  D58:European marble  0  0  0 
1  D59: European marble  1  0  1 
1  D60:European marble  1  1  1 
1  D61:European marble   0  1  1 
1  D62:European marble   0  1  1 
1  D63:European marble   0  1  1 
1  D64:Handwoven Oriental rattan   1  1  0 
1  D65:Handwoven Oriental rattan   0  1  1 
1  D66:Plastic pellets   0  0  1 
1  D67:Plastic pellets   0  1  1 
1  D68:Wood grain   0  0  1 
1  D69:Wood grain   0  1  0 
1  D70:Wood grain   0  1  1 
1  D71:Wood grain  0  1  1 
1  D72:Tree stump, used as a chopping block  1  1  1 
1  D73:Soap bubbles  0  1  0 
1  D74:Coffee beans  0  1  1 
1  D75:Coffee beans   0  1  1 
1  D76:Oriental grass fiber cloth  1  0  1 
1  Lenna  1  1  1 
1  Fingerprint  0  1  1 
1  Koala  0  1  1 
1  Mandrill  1  0  1 
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4. Result and Analysis 

 

In this chapter we will analyze and describe the results obtained from the statistical analysis. 

Note Figure 5 above shows the different images used as well as their respective data. All the data 

was used to calculate the index of each image, which determined the adequate bit coding that is 

required to represent a gray scale image.  However, in order to facilitate the calculation of the 

statistical index, the data was filtered and grouped according to image name (i.e. D01), by doing 

so it was easier to read and calculate the index for each specific image. The remainder of the 

chapter discusses the method used for the index calculation (sign test) and explains the end result 

of said experiment.  

4.1 The Sign Test 

 

Many statistical tests require that your data follow a normal distribution, however, in some cases 

this is not so. Sometimes it may be possible to transform your data to follow a normal 

distribution, in other instances it may not, because the sample size may be too small to actually 

ascertain whether or not the data is normally distributed. In the latter case it is necessary to use a 

statistical test which does not require the data to be normally distributed.  Such a test is called a 

nonparametric or distribution free test.  

Nonparametric statistics is a body of inference procedures that is valid under a much wider range 

of shapes for the population distribution. The term nonparametric inference is derived from the 

fact that the usefulness of these procedures does not require modeling a population in terms of a 

specific parametric form of density curves, such as normal distributions (Bhattacharyya and 

Johnson, 1977). There exists a variation of nonparametric test; one such test is called the sign test. 

This nonparametric test is notable for its intuitive appeal and ease of application. As its name 

suggests, this test utilizes only the signs of the differences of the N pairs. In this experiment the 

sign test is used to test the null hypothesis H, which states that no significant difference exists 

between a re-quantized image and the original. As previously mentioned, during the 

experimental survey the data gathered from the test subjects (Y and N) were converted to binary 

"1" and “0” respectively. The test statistic is the sum of these values, and the question of interest 
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is the frequency with which a random assignment of "1" and "0" within each pair yields as 

extreme a value (whether high or low) as the observed data. 

For large samples, the sign test can be performed by using the normal approximation to the 

binomial distribution (Bhattacharyya and Johnson, 1977). The test statistic  is the number of 

success in  trials and therefore has a binomial distribution  under  with success 

probability of  [3]. This distribution is given by the following formula 

 

Therefore, with large , the binomial distribution  is approximately normal with a mean 

of  and variance of . Hence, under  for large sample approximation to the sign test, we 

need to compute  

 

the above limit theorem states that the distribution  is approximately distributed as standard 

normal distribution.  

4.2 Results and Analysis  

In this research, the experimental data shown above was used in matlab to perform the statistical 

sign test and derive the necessary indices for all 80 images obtained from (Brodatz, 1966); the 

data is shown in Tables 1.  Furthermore, remember that in Chapter 3 above and from Figure 5 it 

is clearly shown that each of the “Y” and “N” were converted to binary “1” and “0” respectively 

for feasible use in the statistical sign test.  However, in addition to “0” signifying no difference 

among the images; recall that the test subjects marked an “X” (i.e. -1 in binary) if they weren’t 

sure if any real difference existed among the images. As a result, to facilitate the use of the sign 

test, -1 was used to also represent “no difference” just as 0. Therefore, either both 0 and -1 

represents no significant difference, while 1 represents a significant difference and as the sign 

test suggest, the test statistics is the sum of these counts (1, 0 and-1). 
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A first glance at the table of indices below clearly shows that majority of the images for all three 

bit levels have negative indices; thus the null hypothesis seems to be accepted. In order to fully 

understand the results of this experiment we need to consider that these indices are approximated 

as a normal distribution, which is beyond the upper boundary of 1.645. To analyze the data in 

Table 1, we will use the boundary to measure where the indices of the images fall. In other words, 

we will only consider the upper boundary (1.645) as a threshold to analyze the indices with 

respect to the null hypothesis, since our sign test statistic calculates  to be the number of 1’s 

(i.e. significant difference). If an index is greater than our significance level (1.645) then the null 

hypothesis is rejected; the smaller the values the more significant the results will be.  

Closely analyzing the table revealed that image D22 using a 3-bit encoding has a positive index 

of 2.54 passing the 1.645 boundary. Reading further down the table the image Lenna (3 bits) also 

demonstrated a similar effect, having an index of 1.97.  The sign test results show that no similar 

effect exists among the 80 images encoded with 4 bits (16 levels). However, looking at the 5-bit 

encoded images the indices show that two particular image share the same effect as those of the 

3-bit images. These images include D39 and D63 both with indices of 1.69 and 1.97 respectively. 

In total these 4 images where the only images out of the 80 used, that showed a significant 

difference.  Figure 6 below illustrates these images alongside their originals.    

In addition, the remainder of the indices demonstrates that majority of the images show very 

little difference, if not “no significant” difference from the original. Hence, the major goal of this 

experiment, to be able to show that images don’t necessarily require an 8-bit representation, they 

can be easily depicted using 4 or 5 bit encoding.  A more in depth analysis of the indices for each 

bit level confirms that the majority for all 3 levels of encoding fall under the 1.645 boundary. 

The images with 3-bit representation revealed that a total number of 78 images out of the 80 

images used had indices under the bound, only D22 and Lenna with 3-bit coding show a 

significant difference. Moreover, the 4-bit images had all indices under the 1.645 upper bound, 

suggesting that a 4-bit encoding would be the most adequate level to represent an image. The 

images with a 5-bit representation showed all indices except D39 and D63 are under the bound 

1.645.  
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Table 1: Indices of Images 1 to 80 

Level\Image  D01  D02  D03  D04  D05  D06  D07  D08  D09  D10 
3 bit  ‐1.13  1.41  0.28 ‐1.70 ‐0.57 ‐0.85 ‐0.57 ‐2.83  ‐1.13  1.41
4 bit  ‐0.28  ‐2.83  ‐3.39 ‐0.57 0.00 0.00 1.41 ‐0.85  ‐0.85  ‐2.55
5 bit  ‐4.24  ‐3.68  ‐3.11 ‐2.83 ‐1.98 ‐1.70 ‐1.98 ‐2.26  ‐1.98  ‐2.26

 

Level\Image  D11  D12  D13  D14  D15  D16  D17  D18  D19  D20 
3 bit  ‐0.85  ‐0.28  ‐0.57 ‐0.57 0.57 ‐1.13 ‐1.13 ‐0.85  ‐1.13  ‐1.98
4 bit  ‐0.28  ‐1.13  ‐0.28 ‐0.85 ‐1.98 0.28 ‐0.28 0.57  ‐0.28  ‐1.70
5 bit  ‐0.85  ‐3.11  ‐1.13 ‐1.98 ‐1.13 ‐1.98 ‐1.70 ‐1.98  ‐2.55  ‐1.13

 

Level\Image  D21  D22  D23 D24 D89 D26 D27 D28  D29  D30
3bit   ‐0.85 2.55  ‐1.41 ‐0.57 0.00 ‐1.98 0.85 0.57  ‐0.85  ‐1.13
4bit   ‐1.98 ‐2.83  ‐1.41 ‐1.70 ‐1.70 ‐0.28 ‐1.70 ‐0.85  ‐0.57  ‐2.55
5bit   ‐3.96 ‐1.41  ‐1.41 ‐1.98 ‐3.39 ‐0.85 ‐2.83 ‐1.13  ‐2.83  ‐2.83

 

Level\Image  D31  D79  D88  D90  D35  D36  D37  D38  D39  D40 
3bit   1.13 ‐0.28  ‐0.85 ‐1.41 ‐2.26 ‐1.13 0.00 0.85  ‐1.41  ‐0.85
4bit   ‐0.57 0.00  ‐0.85 ‐0.85 ‐1.98 ‐1.13 ‐1.41 ‐2.83  ‐1.70  ‐0.57
5bit   ‐1.41 ‐1.98  ‐1.41 ‐2.55 ‐1.70 ‐2.26 ‐2.55 ‐2.26  1.70  ‐0.85

 

Level\Image  D41  D42  D43  D44  D45  D46  D47  D48  D49  D50 
3bit   ‐0.28 0.57  ‐1.98 ‐2.55 ‐2.55 ‐2.55 ‐1.70 ‐0.28  0.57  0.57
4bit   ‐0.57 0.57  ‐1.98 ‐1.41 ‐1.98 ‐2.83 ‐0.85 ‐1.13  ‐2.26  ‐2.26
5bit   ‐1.70 0.00  ‐2.55 ‐1.41 ‐2.83 ‐1.13 ‐2.26 ‐2.55  ‐0.85  ‐2.83

 

Level\Image  D51  D52  D53  D54  D55  D56  D57  D58  D59  D60 
3bit   0.28 ‐1.41  ‐2.55 ‐0.85 ‐1.70 ‐1.13 ‐1.41 0.85  ‐1.41  ‐1.41
4bit   ‐1.13 ‐1.41  ‐1.70 ‐1.41 ‐1.13 ‐1.13 ‐2.55 ‐2.83  0.28  ‐1.70
5bit   ‐1.13 ‐1.13  ‐2.83 ‐2.26 ‐3.11 ‐1.70 ‐2.55 ‐2.26  1.13  ‐1.13

 

Level\Image  D61  D62  D63  D64  D65  D66  D67  D68  D69  D70 
3bit   ‐0.28  ‐0.57  ‐1.98 ‐0.57 ‐1.98 ‐1.13 ‐0.28 ‐1.70  ‐2.26  ‐0.85
4bit   ‐0.57  ‐0.85  ‐1.41 0.00 ‐0.28 ‐0.85 ‐0.85 ‐1.70  1.13  0.57
5bit   ‐1.13  ‐2.26  1.98 ‐1.98 ‐2.83 ‐2.26 ‐0.85 ‐3.39  0.28  ‐1.13

 

Level\Image  D71  D72  D73  D74  D75  D76  Lenna Fingerprint  Koala  Mandrill
3bit   ‐1.41  0.00  ‐1.41  0.28  ‐0.28 ‐0.57 1.98  ‐0.28  0.85  0.85 
4bit   ‐0.57  ‐0.85  ‐1.13  ‐0.85 ‐2.26 ‐0.85 0.28  ‐0.85  1.41  ‐0.28 
5bit   ‐0.57  ‐2.55  ‐1.70  ‐0.57 ‐2.26 ‐1.13 1.41  ‐0.85  ‐0.85  0.85 
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Conclusively, based on this survey the results revealed that majority of the test subjects believe 

that 78 of the images with both 3 and 5 bit representations showed the least significant difference 

from the original images.  Hence, the sign test indicates that the null hypothesis, H, has been 

accepted, since majority of the images show no real significant difference. 

Therefore, it can be confidently said that an image does not always require an 8-bit 

representation (256 gray levels), but rather it is adequately enough to represent an image using a 

3-bit (16 gray levels) or 5-bit (32 gray levels) representation, without having the least signs of 

false contouring or rough edges. 

 

Original 3 – Bit (8 gray levels) 

3 – Bit (8 gray levels) Original 

A 

B 
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The reason why D39 and D63 textures shown above do not pass a test of 32 levels but 

successfully interpret levels 8 and 16 are due to the special distributions of the original gray 

intensities as shown in Figure 7 which shows that the original texture images might be “over-

fitted” by using 32  gray levels. 

Figure 6: Images that showed significant difference: A-Image D22, B-Lenna, 
C–Image D39 and D- Image D63 

D 

Original 5 – Bit (32 gray levels) 

5 – Bit (32 gray levels) Original 

C 
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           Figure 7: The distributions of gray intensities for images D39 and D63. 

 

4.3. Histogram Equalization vs. JPEG/JPEG2000 Image Compression 

The previous sections reveal that most of the texture images could be recorded in 8 gray levels 

without causing much visual difference, however, a natural image would take more levels. We 

further applied JPEG (Pennebaker and Mitchell, 1993) compression by Photoshop CS (Adobe 

Photoshop, 2009) and JPEG2000 based on 5/3 wavelet basis (Taubman and Marcellin, 2002; 

Chen, 2009) and report the peak signal-to-noise (PSNR) values for a comparison as shown in 

Figure 8 and Table 2, respectively. 
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            Figure 8: from left to right, an original image vs. results of histogram equalization (8 

levels), JPEG by Photoshop (scale 2), JPEG2000 based on 5/3 transform for images 

D04: pressed cork,  D23: beach pebbles,  D24: calf leather,  and Mandrill. 
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Table 2: Image representation vs. PSNR values for four 512x512 images:  

(a) pressed cork, (b) beach pebbles, (c) calf leather, (d) mandrill 
 

Methods  D04  D23  D24  Mandrill 

Histogram EQ 

PSNR 

96 Kb 

28.15 

96 Kb 

28.90 

96 Kb 

27.67 

96 Kb 

26.43 

JPEG/DCT 

PSNR 

118 Kb 

24.60 

75.7 Kb 

29.39 

121 Kb 

24.81 

67.6 Kb 

27.40 

JPEG2000/DWT 

PSNR 

64 Kb 

21.36 

64 Kb 

30.16 

64 Kb 

21.23 

64 Kb 

25.62 

 

The images shown in Figure 8 associated with the statistics listed in Table 2 support that the 

results of visualization based on 8-level representation should be enough for most of textures due 

to the repeated “patterns” implicitly exist in a texture image even though the PSNR values are 

not  high. This study only provides a statistical approach to verify visualization results, we do not 

take the homogeneous and/or correlation properties in a neighboring region of an image into 

account, a comparison with standard compression such as JPEG based on DCT (Pennebaker and 

Mitchell, 1993) and JPEG2000 based on wavelet transform (Taubman and Marcellin, 2002; 

Chen, 2009) is provided for reference but should not be emphasized. 
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5. Conclusion 

This research study has clearly shown that in order to represent a texture image, it is not always 

necessary for an 8-bit encoding to be used.  On the contrary, one can easily have the texture 

images represented at a minimum of a 3-bit coding. As the results shown in this paper, the 

proposed null hypothesis has been verified to be true. Results showed that the test subjects 

believe 78 out of 80 images or 97.5% of the images with 3 and 5 bit levels, at 5% of the rejection 

level showed no real significant difference when compared to their originals. Therefore, 

histogram equalization proves to effectively alter a texture image to many different levels of 

contrast, however, in order to obtain best and adequate results from the equalization method we 

can confidently suggest (based on this survey) that a texture image can be equalized and encoded 

using 3~5 bits without having the least sign of difference. We emphasize the representation of 

minimum levels for texture images but not optimal compression for general natural images. 

Whether the provided statistical approach could be adopted for the study of general natural 

images such as commonly used images lenna, scene, and etc. merits further investigation. 
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