
A Comparison of Texture Features Based on SVM and SOM 

Chih-Ming Chen1, Chien-Chang Chen2 and Chaur-Chin Chen1

1Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan 
2Department of Information Management, Hsuan Chang University, Hsinchu 300, Taiwan 

Email: cchen@cs.nthu.edu.tw

Abstract

Experimental results of texture features derived 

from Gabor and other four wavelet transforms 

classified and clustered based on Support Vector 

Machine (SVMs) and Self-Organizing Maps (SOMs) 

are reported in this paper. A comparison of SVM and 

SOM in texture classification is illustrated. The results 

show that these texture sets with appropriate 

classifiers perform reasonably well. 

1. Introduction
Over the past few decades a considerable number of 

studies have been made on texture analysis [5]. Recent 

multimedia applications tend to use texture extractors 

derived from wavelet transforms [4][11].  What seems 

to be lacking, however, is a comparison of texture 

features by Support Vector Machine (SVM) and Self-

Organizing Map (SOM). Besides, the texture features 

by SVM and SOM have performed from a slightly 

different viewpoint: the training data with or without 

normalization may affect the results of performance. 

Texture features are extracted by simulating the 

perceptual properties such as orientation, coarseness, 

fineness and regularity. The recently used texture 

extractors, Gabor and four wavelet transforms 

[1][2][3], are reviewed in Section 2. SVM and SOM 

are summarized in Section 3. Section 4 shows 

experimental results of texture features by SVM and 

SOM. Section 5 gives the conclusion. 

2. Review of recent texture extractors
2.1. Features derived from Gabor

The Gabor transform proposed in 1946 by Gabor is 

popular method for simulating human visual system. 

For texture analysis, the 2-d symmetrical Gabor filter 

can be introduced as follows [1] [4] 
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where µ0 is the frequency of a sinusoidal plane and x

and y  are corresponding to the variance of the 

Gaussian distribution. The Fourier transform of (1) can 

be computed as 
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To derive the Gabor features, we define a set of 

Gabor filters by setting the same x, y and µ0 with four 

different s [4] to obtain 12 Gabor subbands by using 

( , µ0) = (0.5426, 0.75), (1.6279, 0.25) and (4.8836, 

0.0833) with  = x = y and the four directions  = 0º, 

45º, 90º, 135º. Consequently, 24 texture features are 

defined as the mean and standard deviation from each 

of  12 Gabor subbands. 

2.2. Features derived from wavelet transforms
The wavelet transforms have been widely studied in 

image processing since 1988 [2][3]. Wavelets include 

various bases, we aim at the four commonly used bases, 

Haar, Daubechies’ four (Daub4), 5/3, and 9/7 wavelet 

transforms [2]. For easy implementations, a wavelet 

basis W is represented as a matrix form [4] [5]. Let f(x,

y) be an input image and let  be a matrix 

multiplication. Then, the output Y of wavelet transform 

on f can be written as  

t
Y W f W . (3)

The procedure of a 3-scale wavelet transform is 

described as Figure 1 [5]. The L and H indicate the low 

and high pass filters of a wavelet transform.  Then, the 

four subbands of the first level, LL1, LH1, HL1 and 

HH1, are obtained from the row and column 

convolutions with low and high pass filters. The 

procedure is to repeat sequentially the row and column 

convolutions on the subband composed of coefficients 

of lowest-frequency twice. Thus, the input image is 

decomposed into ten subbands of different spatial 

frequency. 

Finally, the mean and standard deviation of wavelet 

coefficients in each subband are computed as features, 
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so there are twenty features derived from a 3-scale 

wavelet transform. The matrices corresponding to the 

four wavelet transforms are given as follows. 

Figure 1.  A 3-scale wavelet transform.

2.2.1. Haar Wavelet Transform:  The Haar transform 

is the simplest type of the wavelet transforms. In brief, 

the concept of Haar wavelet can be explained by 

moving average and moving difference whose matrix 

form is given below. 
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2.2.2. Daub4 Wavelet Transform:  As in the Haar 

transform, the Daub4 transform is expressed as 
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2.2.3. 5/3 Wavelet Transform: The 5/3 wavelet 

transform is a reversible transform for lossless image 

data compression in JPEG2000 [11] whose matrix 

form is given in (6). 

2.2.4. 9/7 Wavelet Transform: Besides reversible 5/3 

wavelet transform, a floating bi-orthogonal 9/7 wavelet 

transform, is presented to compress images more 

efficiently. The forward 9/7 wavelet transform is given 

in (7). Based on (3), the texture features can be derived 

by using the 9/7 wavelet matrix. 
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0 00 1 2 3 4 4 3 2 1

0 02 1 0 1 2 3 4 4 3

0 02 3 4 4 3 2 1 0 1

0 00 1 2 3 4 2 1

0 02 1 0 1 2 3 4

0 02 3 4 2 1 0 1

W (7)

where the coefficients for the W97 are given in Table 1. 

Table 1. The coefficients of 9/7 wavelet transform.

2.3. Features derived from Gabor and wavelets 
To implement a Gabor transform on an image X, 

we need to compute inverseFT(FT(X) FT(G)), where 

 is a pointwise operation and FT represents Fourier 

transform. For other wavelet transforms, a matrix 

computation WXWt is applied. For either Gabor or 

other four wavelet transforms, the mean and standard 

deviation of corresponding transformed coefficients in 

each subband are computed as features. 

3. Texture classification
3.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) investigated by 

Vapnik has recently been proposed as new machine 

learning system based on statistical learning theory [6]. 

SVM designs the classifier functions by constructing 

hyperplanes in a multidimensional space that separate 

different categories of the training data. The main idea 

is to build the hyperplanes as the decision boundaries 

by using the fitting kernel such as radial basis function 

(RBF), polynomial or linear classifiers [6] [5]. Then, 

the hyperplanes try to split the positive examples from 

the negative examples and maximize the distance of 

the marginal separation between classes. 

In practice, there are various algorithms to train 

SVM. We adopt the Platt’s SMO algorithm to train the 

input data in our experiments [7] [8]. For multi-class 

classification, the one-against-one approach is chosen 

to classify the test data. 
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3.2. Self-Organizing Map (SOM) 
The Self-Organizing Map was developed by 

Kohonen in the early 1980s [9]. Based on the artificial 

neural networks, the weights of the neurons in the 

SOM are adjusted to fit the various input classes of 

patterns in the training data. In practice, the SOM will 

construct a topology map, preserving mapping from 

the high dimensional space onto map units with one or 

two dimensions. It is a useful tool for visualizing high 

dimensional data in one or two dimensional space. 

Moreover, the topology map can be easily adjusted to 

fit the particular patterns according to many external 

parameters of the SOM [5]. 

In our experiments, we adopt the algorithm of 

Kohonen’s SOM [9], which can be divided into several 

steps as follows [5] 

Step 1: Each feature in the training data (cross patterns) 

is normalized to lie on the surface of unit sphere.. 

Step 2: Find the best matching neuron (winning node) 

and update the weight vectors of winning node and its 

neighborhood. 

Step 3: Iterate Step 2 until a sufficiently accurate map 

is acquired. In the experiments, we assume T=1000 as 

a suitable number of passes through the training data. 

The map is then calibrated by assigning the labels 

or classes to the neurons. Finally, the calibrated map 

serves as a classifier for input test vectors by using the 

nearest neighbor decision.  

4. Experimental results
The 96 classes of visually selected homogeneous 

texture images of size 512 by 512 are taken from 

Brodatz images [5][11]. The database consists of 1536 

texture images of size 128 by 128 which are collected 

from each 512 by 512 image with non-overlapping 

regions. The features derived from Gabor and four 

wavelet transforms. Among all images of the database, 

the 768 images are used as training for SVM and SOM, 

and the other 768 images are used to test the classifiers. 

4.1. SVM-based classification using various 
kernels with/without normalization

For SVM, we take three kernels: Linear, 

Polynomial and Radial Basis Function (RBF) [5][7], 

and evaluate the effects of normalized and non-

normalized features. 

Figures 2 and 3 show that the SVM using the RBF 

kernel is sensitive to the training data. A possible 

interpretation is that most features have extreme 

variance so that the distance between any two patterns 

is almost negligible. On the other hand, the texture 

features derived from Daub4 and Haar transforms are 

consistent for the SVM with linear kernel. Recall that 

the 5/3 and 9/7 use larger size of neighborhoods than 

Daub4 and Haar transforms to compute features, which 

might also introduce noise with non-local properties 

into texture features. 
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Figure 2. Results of SVM using various kernels 
without normalization.
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Figure 3. Results of SVM using various kernels 
with normalization.

4.2. SOM-based classification using different 
sizes of topology maps

For SOM classification, the three sizes (20 20, 25

25 and 32 32) of maps are selected to train and test the 

texture features. The SOM are trained with 1000 

iterations, (0)=0.7 and neighborhood size 7 7.

The results in Figure 4 show that a map of larger 

size performs slightly better than others. However, the 

larger size of map takes more time to train input 

patterns. Besides, the larger size of map must affect the 

selection of neighborhood size. 
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Figure 4. Results of the different size of SOM. 
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4.3. The effect of SOM-based classification 
with/without normalization

As for the SVM classification, the SOM with 

normalization and without normalization also affects 

the classification of  Daub4 and Haar transforms. 

Figure 5 shows the texture features of Daub4 and 

Haar transforms with normalized features are better 

than those without normalization, which indicates that 

some subsets of features from either Daub4 or Haar 

transforms may dominate the others. 
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Figure 5. Results of SOM of size 32 32 by 
using normalized and non-normalized data.

4.4. Comparison of texture classification based 
on SVM and SOM

This section takes a comparison of SVM and SOM 

with better classification rates from the above 

experimental results. The SOM is trained with 1000 

iterations, map size 32 32, (0)=0.7 and neighborhood 

size 7 7, and the SVM selects the linear and RBF 

kernels corresponding to normalized and non-

normalized data.  

Figure 6 shows SVM of using Gabor transform 

without normalization performs better than others. 

SOM is more sensitive to the data with or without 

normalization than SVM. The normalized Daub4 and 

Haar features are better than non-normalization ones. 
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Figure 6. A Comparison of  SVM and SOM. 

5. Conclusion 

Experimental results show that SVM is more stable 

than SOM for evaluating texture features although 

both are good tools for studying classification and 

clustering. The computationally intensive Gabor 

features associated with SVM are good for 

classification which matches the previous studies in 

[11]. The use of  normalization of texture features for 

classification must be carefully judged. 
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