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Abstract

Experimental results of applying two similarity mea-
surements, Euclidean distance and chord distance, to
test a set of six Brodatz’s textures are reported. Ex-
periments show that in addition to feature extraction,
A similarity measurement between images should be si-
multaneously considered, We also review some other
similarity measurements.

1 Introduction

In a digital multimedia era, the research of content-
based image retrieval (CBIR) used to establish a
database composed of images, each is represented as
a vector of features derived from color, shape, and/or
texture information. When the query is requested, a
similarity measurement between a user-provided im-
age and those prestored in the database is computed
and compared to report a few of most similar images.
In the process, texture features from Gabor, Daub4,
and Haar [3, 5] were commonly extracted as represen-
tative vectors for CBIR although no universally best
set of texture features ever exists. Most of the exist-
ing works highlight a high matched retrieval rate in
author-specified databases by using conventional clas-
sifiers such as 1-nn classifier, Bayesian classifier, or a
Fisher’s discriminant [2, 4]. We have realized that the
recognition rate in a pattern recognition system should
simultaneously consider feature extraction and classi-
fier design [2]. However, a similarity measurement be-
tween two images was seldom investigated. This paper
studies the effect of similarity measurement between
texture features derived from Gabor and wavelet trans-
forms Daub4 and Haar. We report experimental results
on a database of Brodatz’s textures [1].
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2 Similarity Measurement

A similarity measurement must be selected to de-
cide how close a vector is to another vector. The prob-
lem can be converted to computing the discrepancy be-
tween two vectors x,y ∈ Rd. This paper examines the
three distance measurements: Euclidean, Mahalanobis,
and chord distances which are reviewed as follows.

2.1 Euclidean Distance

The Euclidean distance between x,y ∈ Rd is com-
puted by

δ1(x,y) = ‖x − y‖2 =

√√√√
d∑

j=1

(xj − yj)2 (1)

A similar measurement called the cityblock distance,
which takes fewer operations, is computed by

τ1(x,y) = ‖x− y‖1 =
d∑

j=1

|xj − yj | (2)

Another distance measurement called the supreme
norm, is computed by

τ2(x,y) = max
1≤j≤d

|xj − yj | (3)

2.2 Mahalanobis Distance

The Mahalanobis distance between two vectors x
and y with respect to the training patterns {xi} is com-
puted by

δ2(x,y) =
√

(x − y)tS−1(x − y), (4)

where the mean vector u and the sample covariance
matrix S from the sample {xi| 1 ≤ i ≤ n} of size n
are computed by S = 1

n

∑n
i=1(xi − u)(xi − u)t with

u = 1
n

∑n
i=1 xi.
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2.3 Chord Distance

The chord distance between two vectors x and y is
to measure the distance between the projected vectors
of x and y onto the unit sphere, which can be computed
by

δ3(x,y) = ‖x
r
− y

s
‖2, (5)

where r = ‖x‖2, s = ‖y‖2. A simple computation leads
to δ3(x,y) = 2sin(α/2) with α being the angle between
vectors x and y. The smaller the angle α, the closer
the two vectors x and y.

A similar measurement based on the angle between
vectors x and y is defined as

τ3(x,y) = 1 − | cos(α)|, cos(α) =
x · y

‖x‖2‖y‖2
(6)

2.4 Pearson’s Correlation Coefficient

A measurement derived from Pearson correlation
coefficient ρ(x,y) is defined as

δ4(x,y) = 1−|ρ|, ρ =
∑d

i=1(xi − u)(yi − v)

(
√

[
∑d

i=1(xi − u)2]
√

[
∑d

i=1(yi − v)2]
(7)

The larger |ρ| is, the closer the vectors x and y are.

2.5 Spearman Rank Coefficient

A measurement derived from Spearman rank coeffi-
cient γ(x,y) is defined as

δ5(x,y) = 1 − 6
∑d

j=1 r2
j

d(d2 − 1)
(8)

where rj = x(j)−y(j) is the rank difference between the
components of vectors x and y. Note that −1 ≤ δ5 ≤ 1.
the larger δ5 is, the closer the vectors x and y are.

3 Experimental Results

Texture features computed from Gabor, Daubechies’
four (Daub4) and Haar transforms [3] tested on 96 tex-
tures with 6 categories are given in Table 1. The tex-
ture images are shown in Figure 1.

(a) pressed cork (b) aluminum wire (c) straw

(d) beach pebbles (e) wood grain (f) cotton canvas

Figure 1: Six Brodatz’s Textures: (a) D04, (b) D06,
(c) D15, (d) D54, (e) D68, (f) D77.

Table 2: Leave-one-out Errors on Six Brodatz’s
Textures.

δj Gabor Daub4 Haar
Euclidean 4/96 0/96 0/96

Chord 8/96 0/96 3/96
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