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Textures have been used in various applications, such as carpet quality control, re-
gion recognition in satellite images, and body painting control in the vehicle industry.
This paper studies texture synthesis. We survey the algorithms for synthesizing tex-
tures that have proposed over the past two decades. A variety of algorithms associated
with synthesized textures are given. The godl is to further understand textures, to pro-
vide the methodology needed to generate various textures in other studies, and to insti-
gate pursuing better models for synthesizing more interesting textures.
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1. INTRODUCTION

Texture is one of the important characteristics of a digital image. Although tex-
tures have been widely studied over the past two decades, a precise definition of texture
still does not exist [8]. We define a texture as an image containing no explicit objects.
There are two categories of textures: structural textures and statistical textures. A
structural texture consists of primitives with their relocations based on some replacement
rules, such as scaling, rotation, trandation, and reflection.  Structural textures are fre-
quently used to investigate the relationships among similarity, homogeneity and symme-
try in the responses of the human visual system. Two examples of structural textures
aregivenin Fig. 1. Statistical textures are formed based on probabilistic models, such
as fractal models[2], time series models[6], and random field models[3].

This paper will focus on statistical textures. Although a variety of agorithms
based on generative mathematical models for texture synthesis have been published,
many of these works did not report parameters. This paper reviews and reports a
variety of experiments on texture synthesis based on mathematical models:
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Fig. 1. Structural textures.

(1) theautoregressive (AR) model [6],

(2) thefractal model [2, 9],

(3) the Markov random field (Mrf) model [3, 7],
(4) the matrix decomposition model [14].

There does not exist a versatile model which can produce any desired texture, and
textures generated based on these four models are visually different. The details of
these models will be discussed in the following sections.

2. TEXTURES GENERATED BY THE AR MODEL

Let agray level image of size N x N be represented by X(i, j), where 0<i,j < N - 1.
Suppose that the first column and the first row of the image X are known, the remainder
of the image can be generated based on the 2D autoregressive model [6] by means of the
following formula according to lexicographic order:

X(i,j) = aX(i, j — 1) + bX(i — 1, — 1) + cX(i — 1, ]) + s, =N, 1) areiid. (1)

Let the first row and the first column of the image X be randomly given, which fol-
low thei.i.d. Gaussian distribution with mean 128 and variance 900. Two synthesized
textures with parameters (a) (a, b, ¢, s) = (0.1, 0.8, 0.1, 30) and (b) (0.45, 0.1, 0.45, 30)
areshownin Fig. 2.

(b)
Fig. 2. Textures synthesized using the AR model.

The AR model can generate textures that look like cloud, grass, and/or rain patterns.
The parameters a, b, and ¢ affect the directionality of the synthesized texture, and the
parameter s affects the spread of the gray values of the texture image. The ranges a, b,
ce (-1, 1) and s< 40 are suggested.
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3. TEXTURES GENERATED BY FRACTAL MODELS

Fractal models used to generate such textures as ferns, Serpinski triangles, and
snowflakes have recently received attention in the image compression field [2]. Syn-
thesisis based on the iterated function system (IFS) codes, which are nothing but a set of
affine transformations.  We list the algorithm and specify some parameters to generate
two fractal textures. Let Ae R*?andt e Re. An affine transform on x € R is defined
asAx +t. To describe the algorithm, we denote A = [i" f;' ] with p; = | ad — bic | # 0,
and let t; denote ['? ] Then an algorithm based on IFS codes with K affine transforms

islisted below. Experiments conducted using two sets of affine transformations to gen-
erate textures are given.  The parameters of this fractal model are given in Tables 1 and
2, respectively.  Two such synthesized textures are shown in Fig. 3.

Table 1. IFScodesfor afern.

[ C b Gi d; € fi
1 0 0 0 0.16 0 0
2 0.85 0.04 —0.04 0.85 0 1.60
3 0.20 —-0.26 0.23 0.22 0 1.60
4 |-0.15 0.28 0.26 0.24 0 0.44
Table 2. IFS codesfor Sierpinski triangles.
[ g bi Ci d € f;
1 0.5 0 0 0.5 0 0
2 0.5 0 0 0.5 1.0 0
3 0.5 0 0 0.5 0.5 0.5

@
Fig. 3. Textures synthesized using | FS codes.

Fractal Generating Algorithm

(1) Set m= 0 and randomly pick up an initia point xX© e R

(2) Select { A, tj} according to the probability distribution of {r;, 1 <j <K}, wherer; = p/
ZiK_lpi for1<j<K.

(3) X™Y — AX™ + ;.

@ mem+ 1L
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(5) Repeat steps 2, 3, 4 until “ convergence,” for example, m= 1000, is achieved.
(6) Plot {x"} fori = L to 1000, say L = 100.

Convergence of this algorithm was studied by Barnsley [2] and Chu and Chen [9].
An IFS code consisting of two to five contractive affine transforms has been suggested [ 2,
9] which generates self-similar images.

4. TEXTURE GENERATED BY MRF MODELS

Using Markov random fields to synthesize textures is a challenging task. We will
review Mrf and give algorithms for synthesizing textures[7, 15].

4.1 Background of the Markov Random Field

Let x, an M x N texture pattern, be represented as a matrix whose elements take
valuesfromtheset A={0, 1, .., G—1}. Let Q = {x| % = x(i, ]) € A} be the set of al
possible texture patterns, and let S= {1, ..., MN} be the sites of a matrix ordered by a
raster scan. A Gibbs random field (Grf) is a joint probability mass function defined on
Q which satisfies

P(x)=eV™/z, 2

where U(X) isthe energy functionand Z = Z ve Qe‘u(y) is the partition function.

A Markov random field is a Gibbs random field whose probability mass function
satisfies the following conditions.

(a) Positivity: P(X=x) >0 for al xe Q.

(b) Markov property: Forall te S PX =X | X =X, r#t) =PX=X%|X =X, r e R),
where R, is the ordered set of neighbors of sitet.

(c) Homogeneity: P(x; | R) does not depend on a particular sitet.

Fig. 4 defines the relative sites and orders of neighbors of sitet. A Grf and an Mrf
are equivalent [ 7] with respect to a specified neighborhood system.

t-g | -2 [t:+4 2 1 2
t-1] t Jt+1 1 t 1
tid |2 t:+3 2 1 2

@ (b)

Fig. 4. Therelative neighboring sites and orders of sitet.
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A Gibbs random field is completely characterized by its energy function. In this
paper, two commonly used Mrf models whose energy functions have the following form
are introduced:

MN MN c
U =D FO)+ D D HOG %), 3)
t=1 t=1 r=1

where H(a, b) = H(b, a) and ¢ depends on the size of the neighborhood. For example, ¢
= 2, 4 for 1st-order and 2nd-order neighborhoods, respectively. Two Mrf models are
defined below [3, 7, 15].

4.1.1 Generalized Ising model (GIM)
Let A={0, 1, ..., G — 1}; the F and H functions of (2) in the generalized Ising
model are defined as F(x) = o, and H(X, Xu+r)= 6 1(X, X.+), wherel(a, b) =-1ifa=b

and I(a, b) = 1, otherwise.
Simple derivation gives the conditional density:

P(Xt|Rt) =exp[-ay, - Z A (Xtixt:+r)]/ZeXp[_as_ Zer (S Xe:4r )] (4)
scA

r=—c r=—c

An agorithm for simulating the generalized I1sing model (GIM) is given below. The
synthesized textures obtained based on GIM with the parameters M =N =128 and 6= (1,

1,1,-1) [7] are shownin Fig. 5(a).
. \.‘HEE -
s .w
"

Fig. 5. (a) Textures synthesized using Mrf models.

Algorithm GIM

(1) Fors=1toMN, randomly assignag e Afor xsto give aninitial image x.
(2) Fors=1toMN Do

(8 Lety;=xforalt=s. Choosege Aatrandomand lety,=g.

(b) Letr=min{1, P(y)/P(X)}, where P isasdefined in eqg. (1).

(€) x <« ywith probability r.
(3) Repeat step (2) until “convergence” is achieved, for example, 50 iterations.
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Each of the four parameters of the 2nd-order GIM model is restricted to be be-
tween —2 and 2 to avoid the phase-transition phenomenon [7]. In practice, this model
assumes that a texture will consist of a small number of gray levels, for example, 8 or
less. Each parameter determines a directionality; the larger the negative value of the
parameter, the stronger the direction.

4.1.2 Gaussian Markov random field (Gmrf)

A Gmrf was first proposed by Besag as a model for analyzing crop yields in plant
ecology [3]. This model has also been used to model natural textures [4, 7]. Let A= R;
the corresponding F and H functions of Gmrf in eg. (2) are defined as

F(x) = (% — ,Ut)Z/ZOz, H(X, Xer) = = G0% — 28 Xeor — Liar)! . ©)

Simple derivation gives the conditional density:

1
2no

c
> &Xp (X — 4 _Zer (Keeer — Hpgr ))2/20'2 . (6)

—-C

P(x|R)=

The distribution of X under the Gmrf model is a multivariate normal distribution [1]
with the block circulant covariance matrix B™* given below:

- [_ AUR(w 2
F() 27z %P (x-u) B(x—p)/ 20°|. 7)

The matrix B isan MN x MN block circulant matrix with M 2 blocks of N 2 circulant
matrices Bjs, definedas

By BBy
B :BlM B:u--:-Bl:,M—l . (8)
B, BBy

For the 2nd-order neighborhood,

By1 =circulant (1, -6, 0, ..., 0, —-6),
By, = circulant (-6, -6, 0, ..., 0, —6)),
Byv = circulant (-6, —6,, 0, ..., 0, —6),
By=0Ofor2<j<M.

The probability density (7) isvalid only if B is positive definite, and it is identifiable
if no different parameter sets lead to the same eigenvalues of matrix B. Sampling a
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Gmirf is nothing but sampling a multivariate normal distribution [1]. However, in image
analysis, the B matrix is of order MN x MN, that is, 16384 x 16384, when M = N = 128,
so the traditional method for simulating the multivariate normal distribution based on
Cholesky decomposition is infeasible. An agorithm using the properties of block cir-
culant matrices is given below [15]. Let y be an M x N array, and assign the first row of
matrix B of order MN x MN to an M x N matrix A by means of A(i, ) =B(1,j + Nx (i —
1)). An agorithm for simulating Gmrf by adopting fast Fourier transform (FFT) is
listed below. The details can be found in [7, 15]. A synthesized texture based on a
Gmrf model with the parameters M = N = 128, 4 = 128, o = 64, and ¢ = (0.07, — 0.32,
0.07, 0.12) isshown in Fig. 5(b).

Fig. 5. (b) Textures synthesized using Mrf models.

Algorithm Gmrf

(1) Generatean M x N array Y with each element Y(i, j) ~ N(O, ¢°) being independent.
(2) Y<apply2D FFT on'Y.

(3) A« apply 2D inverse FFT on A (formed from the first row of matrix B).

(4 Y(u,v) < Y(uVv) /Au,v), 0<u<M,0<v<N.

(1) Y« apply 2D inverse FFT on Y.

(2) Y+ uisaredization.

This model is nothing but a multivariate normal distribution with the covariance
matrix 0°B™ being a large block-circulant matrix. The parameter 6 affects the direction-
aity, and the parameter o describes the spread of the gray values. It should be mentioned
that the selected parameter 8 must make the matrix B positive definite. It seems that this
model tends to generate more textures as its order increases. However, the restriction of
positive definiteness of matrix B resultsin the problem of parameter selection.

5. TEXTURES GENERATED BY THE
MATRIX-DECOMPOSITION MODEL

Matrix-decomposition used to synthesize textures is motivated by image transforms.
An M by N gray level image X can be regarded as an M by N matrix. If the matrix can be
decomposed as the product of simple matrices, the analysis of texture analysis becomes
simpler. Wewill review an algorithm based on singular value decomposition (SVD) for
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synthesizing textures [14].
SVD-Based Algorithm

(1) Generate unit vectorsus, Us, ..., ux € R™.

(2) Generate unit vectorsvy, Vs, ..., vk € R".

(3) Apply the Gram-Schmidt orthogonalization processto { Uy, Uy, ..., ux € R"} and {vy,
Vy, ..., Vk € RY} to get orthonormal sets, and call them {uy, Uy, ..., ux € R} and {vy,
Vy, ..., Vk € RY}, respectively.

(4) Generate 0, > 0> = ... = o > 0 according to an exponential distribution with a
specified mean vaue u, for example, =16V MN.

K
(5) Getanimage X:zi_lo'iuivit.

Two synthesized textures with M = N = 256, K = 16, and ¢ = 16384 are shown in
Fig. 6. The parameters { i} and u are selected based on the fact that the trace, the sum of
the diagonal elements in a matrix, is egqual to the sum of the eigenvalues which are
closely related to singular values. The synthesized patterns look like the surface of an
IC chip.

@ (b)
Fig. 6. Textures synthesized using the SVD method.

6. DISCUSSION

We have reviewed four statistical texture synthesis models and given examples.
Structure textures are formed by selecting a texton and then placing this texton in a posi-
tion based on scaling, translation, and/or rotation. The models introduced in this paper
are essentially statistical models, which are not appropriate for synthesizing structure
textures although the GIM random field model, with parameters carefully specified, may
generate those structure textures used in psychological tests. Using the other models to
synthesize structure textures is inappropriate.

The AR model can produce natural textures like clouds and is easy to implement.
However, inappropriate selection of the initial gray values of the pixels in the top row
and the leftmost column, and of the parameter s may result in an image in which most of
the pixels have very large gray values (much greater than 255). The restrictions s < 40
and a, b, c € (-1, 1) are suggested. The inverse problem of finding the parameters
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given a texture can be solved using a least squares method. The AR model parameters
can be used to discriminate textures even when the model does not fit the image data.

The fractal model based on an IFS code generates a self-similar texture. In prac-
tice, an IFS code composed of two to five contractive affine transforms is suggested [2,
9]. The parameters must be selected such that each affine transform is contractive.
The inverse problem of finding the number of affine transforms associated with their
corresponding parameters based on a given image has been well studied and used to
compress images [2].

The Markov random field model can be used to synthesize textures and discriminate
textures. Given model parameters, we can generate textures like clouds, maze, and grass.
On the other hand, by fitting a GIM or Gmrf model to a given texture image, we can get
the model parameters as the texture features for discrimination although the model may
not fit the image data[7].

The matrix decomposition method exploits the fact that an image is essentially a
matrix. SVD treats an image, a matrix, as a product of three matrices, among which the
matrix consisting of singular values characterizes the original matrix (image). Selecting
parameters { i} as singular values can produce a texture that looks like the surface of an
IC chip. This method can also be applied to perform texture image compression and
discrimination for alimited number of textures.

7. CONCLUSION AND FUTURE STUDIES

We have reviewed several mathematical models for texture synthesis.  Algorithms
for texture synthesis based on models associated with generated textures have also been
given. Each moded seems to synthesize visually different textures. The matrix de-
composition method based on SVD has recently been investigated, [14] but more ex-
perimental works are needed. A future direction in SVD decomposition research may
be to search for orthogona matrices established based on sinusoidal functions, such as
FFT or DCT, or for orthogonal matrices derived from awavelet transform [5, 12]. An-
other matrix decomposition approach to texture analysis exploits nearly orthogona ma-
trix transform, such as Gabor transform, which is believed to be similar to the response
of the human visual system [10, 11, 13] and has recently been investigated with regard to
texture discrimination. Texture synthesis by means of Gabor transform and wavelet
transform, using the concept behind the matrix decomposition approach also merits fur-
ther study.
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