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Technical section

On bounding boxes of iterated function system attractors
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Abstract

Before rendering 2D or 3D fractals with iterated function systems, it is necessary to calculate the bounding extent of

fractals. We develop a new algorithm to compute the bounding box which closely contains the entire attractor of an

iterated function system.
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1. Introduction

Barnsley [1] uses iterated function systems (IFS) to

provide a framework for the generation of fractals.

Fractals are seen as the attractors of iterated function

systems. Based on the framework, there are many

algorithms to generate fractal pictures [1–4]. However,

in order to generate fractals, all of these algorithms have

to estimate the bounding boxes of fractals in advance.

For instance, in the program Fractint (http://spanky.

triumf.ca/www/fractint/fractint.html), we have to guess

the parameters of ‘‘image corners’’ before the beginning

of drawing, which may not be practical.

For this reason, this paper is devoted to develop a

practical bounding box algorithm. A good bounding

algorithm is also a priori for rendering 3D fractals. Hart

and DeFanti [5] use bounding spheres in their system of

3D fractal rendering. Sometimes the bounding spheres

are very loose such that the rendering of common

fractals may be inefficient. Most of 3D computer

graphic systems employ bounding boxes for rendering

objects. Thus, it is important to develop a tight

bounding box algorithm for rendering fractal objects

in a 3D system.

1.1. Iterated function systems

Definition 1. A transform f : X-X on a metric space

ðX ; dÞ is called a contractive mapping if there is a

constant 0pso1 such that

dðf ðxÞ; f ðyÞÞps � dðx; yÞ 8x; yAX ; ð1Þ

where s is called a contractivity factor for f :

Definition 2. In a complete metric space ðX ; dÞ; an

iterated function system (IFS) [1] consists of a finite set

of contractive mappings wi; for i ¼ 1; 2;y; n; which is

denoted as W ¼ fX ;w1;w2;y;wng:

In this paper, we assume contractive affine transforms

in an iterated function system. A contractive affine

transform w in R2 is
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and a contractive affine transform w in R3 is
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where the eigenvalues of the matrix A have magnitude

less than 1.

Theorem 1 (Barnsley [1]). Let f : : X-X be a contrac-

tive mapping in a complete metric space ðX ; dÞ: Then f

possesses a unique fixed-point xf AX ; and for any xAX ;
the Cauchy sequence ff nðxÞg converges to xf ; where

f nðxÞ ¼ f n	1ðf ðxÞÞ; and f 0ðxÞ ¼ x:

In a Hausdorff metric space ðHðX Þ; hðdÞÞ; an IFS, W ;
is also a contractive mapping, thus it possesses a

unique fixed-point, called the attractor of the IFS.

Tables 1–3 list the 2D IFS codes of fractals given by

the program Fractint, which generate the ‘‘dragon’’,

‘‘coral’’, and ‘‘fern’’ fractal objects [1], respectively.

Fig. 1 shows a picture of these fractal objects. We

will compute the bounding boxes of these IFS codes

later.

Lemma 1. Let W ¼ fX ; w1;w2;y;wng be an iterated

function system. Let A be the attractor associated with W

on ðHðX Þ; hðdÞÞ; and let z1; z2;y; zn be the fixed points of

w1;w2;y;wn; respectively, on ðX ; dÞ: Then ziAA for

i ¼ 1; 2;y; n:

Proof. zi ¼ wN

i ðziÞ since zi is the fixed point of wi; hence
ziAWNðfzigÞ: By Theorem 1, WNðfzigÞ ¼ A: Hence

ziAWNðfzigÞ ¼ A: &

Theorem 2. Let W ¼ fX ; w1;w2;y;wng be an iterated

function system. Let A be the attractor associated with

W ; and zAA: Then the attractor A is equal to

fzg,fW ðzÞg,fW 2ðzÞg,?,fWNðzÞg:

Proof. (a) By Theorem 1, fWNðzÞg ¼ A: Hence,

ADfzg,fW ðzÞg,fW 2ðzÞg,?,fWNðzÞg: ð4Þ

(b) We know zAA; then all the sets

fzg; fW ðzÞg; fW 2ðzÞg;y; fWNðzÞgDA: Thus,

fzg,fW ðzÞg,fW 2ðzÞg,?,fWNðzÞgDA: ð5Þ

From (a) and (b), A=fzg,fW ðzÞg,fW 2ðzÞg
,?,fWNðzÞg: &

Theorem 2 indicates that the entire attractor can be

generated by applying the IFS on some point zAA

iteratively. Thus, it provides a formula to represent all the

points in the attractor as A ¼ fpjp ¼ t1t2ytcðzÞ; tiAfw1;
w2;y;wng and z is the fixed-point of some mapping wjg:

1.2. Previous work

Let W ¼ fX ;w1;w2;y;wng be an iterated function

system on X ; and let A be the attractor associated with

W : We try to find the bounding volume of the attractor

A: In the literature, only bounding ball algorithms were

developed [5–8] for IFSs. A bounding ball is also called a

bounding circle in a 2D space or a bounding sphere in a

3D space.

Canright [6] uses multiple bounding balls to envelop

the entire attractor of an IFS. Let z1; z2;y; zn be

the fixed points of w1;w2;y;wn on ðX ; dÞ; and let

s1; s2;y; sn be the contractivity factors of w1;w2;y;wn;
respectively. They seek n balls Ci centered on zi; 1pipn

such that wðAÞCCi; then AC
Sn

i¼1 Ci: The radii frig are

chosen to satisfy [6]

ri ¼ si max
jai

ðrj þ dðzi; zjÞÞ; 1pipn: ð6Þ

Fig. 2 illustrates Canright’s bounding balls for the fern.

In order to enclose Canright’s balls, a large bounding

box B � Boxðxmin; xmax; ymin; ymaxÞ ¼ ð	14:24; 19:16;
	9:36; 26:70Þ is necessary. We mark the minimum

bounding box of the fern with dotted lines in the figure,

then the computed bounding box by Canright’s algo-

rithm is too loose in practice. However, Canright

provided a very simple and fast solution to compute a

bound for drawing fractals.

Hart and DeFanti [5] introduced another bounding

ball algorithm. Only one bounding ball is computed to

enclose the attractor of an IFS in their algorithm. Initially

the ball C is the unit ball at the origin, then the ball is

moved and enlarged to envelop the entire attractor

iteratively. The next ball Cn in the sequence is found as

on ¼
1

n

Xn

i¼1

wiðoÞ ð7Þ

Fig. 1. The attractors of the 2D IFS codes in Tables 1–3.
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and

rn ¼ max
i¼1yn

ðsir þ dðwiðoÞ; onÞÞ; ð8Þ

where o and r are the origin and radius of ball C and

likewise for ball Cn:
We show the bounding ball for the fern computed by

Hart’s algorithm in Fig. 3. The origin and radius of the

ball Cn are (0.03, 1.44) and 9.28, respectively. Compared

with Canright’s algorithm, Hart’s algorithm obtains a

better result in this case. Rice [8] tries to improve Hart’s

algorithm by optimizing the radius r: The effort made by

Rice has little improvement in this case because the

computed radius for the fern, by Hart’s algorithm, is

close to the optimal radius.

Though many researchers have developed bounding

ball algorithms as shown above, the minimum bounding

boxes of the fern in Figs. 2 and 3 are much smaller than

the computed bounds. Thus, we try to develop a

bounding box algorithm instead. We desire to acquire a

very tight bounding volume instead of a loose one.

However, there are many of problems we have to

overcome. In the next section, we consider these

problems and their solutions. For convenience, we

consider the bounding problem in 2D cases. In Section

3, the new algorithm is presented. We show experimental

results in Section 4. Finally, conclusions are drawn in

Section 5.

2. Bounding boxes for IFS attractors

The advantage of a bounding ball algorithm is that it

can handle rotations. It is a complex problem we have to

resolve when developing a bounding box algorithm

instead. An affine transformation is composed of

translation, scaling, and rotation. Thus a 2D contractive

affine transform of Eq. (2) can be rewritten as

w
x

y

" # !
¼

sx cos y sy sin y

	sx sin y sy cos y

" #
x

y

" #
þ

e

f

" #
; ð9Þ

where jsxjo1 and jsyjo1:
For example, let y ¼ p=4; sx ¼ sy ¼ 0:9; ox ¼ oy ¼ 0;

then

w
x

y

" # !
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" #
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e

f

" #
: ð10Þ

In this case, we will always obtain a smaller ball after

applying w: Here the new radius is 0.9 of the original,

but we may need a larger box to enclose the transformed

box. Fig. 4 shows the transformation of a box with w: A
square with the length of sides 1.28 is necessary to

enclose the transformed unit square. As a result, given

an arbitrary initial box B0; W ðB0Þ may exceed the

extent of B0; for an IFS W : On the contrary, it would be

more tractable if we could find an initial box B0 such

that W ðB0ÞCB0: Assuming this hypothesis is true, B0

will be a loose bounding box of the attractor of W : We

can find a tight bounding box of the attractor of W by

refining B0 iteratively according to the following

theorem.

2.1. Basic theory

Theorem 3. Let W ¼ fR2;w1;w2;y;wng be an iterated

function system of affine mappings in R2: Let B0 ¼
Boxðxmin; xmax; ymin; ymaxÞ � fðx; yÞAR2 j xminpxpxmax

and yminpypymaxg be an arbitrary box satisfying the

following condition

W ðB0ÞCB0: ð11Þ

Then

W iðB0ÞCW i	1ðB0Þ; for iX1: ð12Þ

C1

C2

C3

C4

Fig. 2. Canright’s bounding balls for fern.

C*

Fig. 3. Hart’s bounding ball for fern.
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Proof. We prove this by induction. When k ¼ 1;
W kðB0ÞCW k	1ðB0Þ by Eq. (10). Assume W kðB0Þ
CW k	1ðB0Þ holds for some k > 1: We attempt to prove

W kþ1ðB0ÞCW kðB0Þ: Because W kðB0ÞCW k	1ðB0Þ; thus
for any point pAW kðB0Þ; it implies pAW k	1ðB0Þ:
Therefore, W ðpÞAW kðB0Þ: Hence W kþ1ðB0ÞCW kðB0Þ:
In consequence, the theorem is proved. &

Definition 3 (Minimum bounding box). Let SCR2 be a

subset of R2; the minimum bounding box MðSÞ of S

is a box Boxðxmin; xmax; ymin; ymaxÞ � fðx; yÞAR2 j xminp
xpxmax and yminpypymaxg that contains the supreme

values of coordinates of points in S: That is, for any

point ðxp; ypÞAS; xminpxppxmax and yminpyppymax;
and there exist four supreme points p1; p2; p3 and

p4AS such that xp1 ¼ xmin; xp2 ¼ xmax; yp3 ¼ ymin and

yp4 ¼ ymax:

Let the minimum bounding box of W i	1ðB0Þ be

MðW i	1ðB0ÞÞ¼Boxðxmin;xmax; ymin; ymaxÞ; then W i	1ðB0Þ
CMðW i	1ðB0ÞÞ: On the other hand, W iðB0ÞCW i	1ðB0Þ
implies W iðB0ÞCMðW i	1ðB0ÞÞ by Theorem 3. Therefore

the supreme values of MðW i	1ðB0ÞÞ are bounded by the

rectangle of ðxmin; xmax; ymin; ymaxÞ: This means that

MðW iðB0ÞÞCMðW i	1ðB0ÞÞ which implies that we will

get smaller boxes as we continuously apply the IFS

operator W on an initial box B0; if the condition

W ðB0ÞCB0 holds. Let A be the attractor of the IFS W ;
we know WNðB0Þ ¼ A by Theorem 1. Therefore, the

sequence fMðW iðB0ÞÞg
N

i¼0 converges to the minimum

bounding box MðAÞ of the attractor A:

2.2. Existence of an initial box

Assume a box B0 is found, and the condition

W ðB0ÞCB0 holds. Then the box B0 is a loose bounding

box of the attractor of the IFS W : This allows us to

generate tighter bounding boxes when we iteratively

apply W on B0: This hypothesis however is based on the

existence of the initial box B0: Does a box B0 such that

the condition W ðB0ÞCB0 holds for any IFS W exist?

The answer is negative. For instance, we cannot find

such a box for the IFS code of the fractal ‘‘dragon’’ in

Table 1. However, we can ensure the hypothesis holds

for some IFSs under a certain restriction described

below.

Theorem 4. Let W ¼ fR2;w1;w2;y;wng be an iterated

function system of affine mappings in R2: The affine

mappings are

wi

x

y

" # !
¼

ai bi

ci di

" #
x

y

" #
þ

ei

fi

" #
:

If we assume that

jai j þ jbi jo1; jci j þ jdi jo1 for i ¼ 1;y; n; ð13Þ

then there exists a box B0 such that W ðB0ÞCB0:

Proof. We prove this by finding a box that obeys the

condition W ðB0ÞCB0: We check the absolute values of

the coefficients of the mappings fwig: Let

S ¼ max
1pipn

fmaxfjai j þ jbi j; jci j þ jdi jgg; ð14aÞ

E ¼ max
1pipn

jei j; ð14bÞ

F ¼ max
1pipn

jfi j ð14cÞ

and

K ¼
E þ F

1	 S
: ð15Þ

Then, the box B � Boxðxmin; xmax; ymin; ymaxÞ ¼ ð	K ;K;
	K ;KÞ will be such a box that the condition W ðB0ÞCB0

(0,1) (1,1)

(0,0) (1,0)
(0.64,-0.64)

affine mappping w

(0.64,0.64)

(0,1.28)(0,0)

Fig. 4. An example of transforming a box with an affine mapping w:

Table 1

IFS code for dragon

wi ai bi ci di ei fi

1 0.824074 0.281482 	0.212346 0.864198 	1.882290 	0.110607

2 0.088272 0.520988 	0.463889 	0.377778 0.785360 8.095795
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holds. The verification of this success is given in the

appendix. &

Eq. (13) holds for the affine maps of the IFS codes for

the fractals ‘‘coral’’ and ‘‘fern’’ in Tables 2 and 3. Hence,

we can find an initial box B0 with Eq. (15), then refine

the box into a very tight bounding box as MðW mðB0ÞÞ;
where m is a large number. However, Eq. (13) does not

hold for the fractal ‘‘dragon’’. We overcome this

problem by Theorem 5 listed below.

Definition 4. Let W1; W2 be two iterated function

systems of affine mappings in R2; and let A1; A2 be

the attractors associated with W1; W2; respectively. We

say that W1; W2 are equivalent if A1; A2 are identical.

Theorem 5. Let W ¼ fR2;w1;w2;y;wng be an iterated

function system of affine mappings in R2: Let fi ¼ w1wi;
for i ¼ 1; 2;y; n: Then the IFS W 0 ¼ fR2; f1; f2;y; fn;
w2;y;wng is equivalent to W :

Proof. Let A and A0 be the attractors of IFSs W ;
and W 0; respectively. Let z be the fixed point of w1:
Then zAA by Lemma 1. Also by Theorem 1, there

exists an integer k; such that z ¼ w2k
1 ðzÞ ¼ f k

1 ðzÞ: Thus
zAA0; too. Thus by Theorem 2, the attractors

are A ¼ fzg,fW ðzÞg,fW 2ðzÞg,?,fWNðzÞg and

A0 ¼ fzg,fW 0ðzÞg,fW 02ðzÞg,?,fW 0NðzÞg:

(a) For any point pAA; there exists an integer c

such that pAW cðzÞ: Let p ¼ t1t2ytcðzÞ where

tiAfw1;w2;y;wng: We scan the sequence t1t2ytc; and
transfer the pattern tj tjþ1 into fs if tj ¼ w1 and tjþ1 ¼ ws:
If tc ¼ w1 and tc	1aw1; then we can transfer tc into f1; as
w1ðzÞ ¼ w2

1ðzÞ ¼ z: Consequently, we can rewrite

t1t2ytcðzÞ as u1u2yud ðzÞ where uiAff1; f2;y; fn;
w2;y;wng: Hence pAW 0d ðzÞ and pAA0:
(b) For any point pAA0; there exists an integer d

such that pAW 0d ðzÞ: Let p ¼ u1u2yud ðzÞ where

uiAff1; f2;y; fn;w2;y;wng: It is apparent by definition

that there exists an integer c such that p ¼ t1t2ytcðzÞ;
where tiAfw1;w2;y;wng: Thus pAA:
By (a) and (b), the attractors A and A0 are

identical. &

Given an IFS W ¼ fR2;w1;w2;y;wng; we can

decompose the affine mapping wi into ðwiw1;wiw2;y;
wiwnÞ; if Eq. (13) does not hold for wi: Thus forming a

new IFS, W 0; that is equivalent to the original IFS.

Moreover, we can iteratively apply this decomposition

procedure until Eq. (13) holds for all of affine mappings.

Because all the affine mappings in W are contractive, the

decomposition procedure always succeeds. For example,

we can decompose the affine mapping w1 of the IFS for

the ‘‘dragon’’in Table 1 into ðw1w1w1;w1w1w2;w1w2Þ;
and the new IFS W 0 ¼ fR2; w1w1w1; w1w1w2; w1w2; w2g
is equivalent to the original IFS W ¼fR2;w1;w2g: Table 4

Table 2

IFS code for coral

wi ai bi ci di ei fi

1 0.307692 	0.531469 	0.461538 	0.293706 5.401953 8.655175

2 0.307692 	0.076923 0.153846 	0.447552 	1.295248 4.152990

3 0 0.545455 0.692308 	0.195804 	4.893637 7.269794

Table 3

IFS code for fern

wi ai bi ci di ei fi

1 0 0 0 0.16 0 0

2 0.85 0.04 	0.04 0.85 0 1.6

3 0.2 	0.26 0.23 0.22 0 1.6

4 	0.15 0.28 0.26 0.24 0 0.44

Table 4

Equivalent IFS code for dragon

wi ai bi ci di ei fi

1-a 0.409460 0.585012 	0.441325 0.492851 	4.682884 0.792306

1-b 	0.165779 0.143135 	0.350368 	0.446332 0.869093 5.474304

1-c 	0.057834 0.322995 	0.419636 	0.437105 1.043725 6.718995

2 0.088272 0.520988 	0.463889 	0.377778 0.785360 8.095795

H.-T. Chu, C.-C. Chen / Computers & Graphics 27 (2003) 407–414 411



lists the new IFS code W 0 for the fractal ‘‘dragon’’. Since

Eq. (13) holds for all of affine mappings in W 0; we can

compute a tight bounding box of the fractal ‘‘dragon’’

using Theorem 3.

3. The new algorithm

As we have seen in the previous section, we are able to

find a tight bounding box of the attractor A of an affine

IFS W : Given a box B0 such that W ðB0ÞAB0; we know

that the sequence fMðW iðB0ÞÞg
n
i¼0 converges to the

minimum bounding box MðAÞ of the attractor A:
Thus W iðB0Þ with large i values will be close to MðAÞ:
Let the corners of B0 be b1; b2; b3; b4: Then the

supreme values of the x- and y-coordinates of points

in W iðB0Þ will fall in W iðfb1; b2; b3; b4gÞ: Thus, we

compute W iðfb1; b2; b3; b4gÞ to find the bounding

box MðW iðB0ÞÞ: However, the computation of

W iðfb1; b2; b3; b4gÞ is expensive. It requires exponential

time. For example, the computation for a tight

bounding box MðW 100ðfb1; b2; b3; b4gÞÞ of the fractal

‘‘fern’’ in Table 3 needs to compute 4
 4100 points

(corners) which is not feasible by exhaustive computa-

tions. Fortunately, the computations for most of the

points are redundant, and can be reduced using the

following lemma.

Lemma 2. Let W ¼ fR2;w1;w2;y;wng be an iterated

function system of affine mappings in R2: Let B0 be an

arbitrary box and W ðB0ÞDB0: Then

wjðW iðB0ÞÞDwjðW i	1ðB0ÞÞ; for iX1; j ¼ 1;y; n:

ð16Þ

Proof. This lemma is a natural extension of Theorem 3,

because W iðB0ÞDW i	1ðB0Þ implies that wjðW iðB0ÞÞD
wjðW i	1ðB0ÞÞ: &

Fig. 5 shows a tree representation of computing

W 2ðB0Þ: Let xmax1 be the maximum x-coordinate of

W ðB0Þ that comes from one of the x-coordinates of

w2ðB0Þ: Then the x-coordinates of the points w1ðB0Þ
are all less than xmax1: Moreover, by Lemma 2, the

x-coordinates of points in w1W ðB0Þ ¼ fw1w1ðB0Þ;
w1w2ðB0Þ;y;w1wnðB0Þg are always less than xmax1;
too. As a result, the computation of w1W ðB0Þ may be

unnecessary for the supreme x-value of W 2ðB0Þ: There-
fore, we compute w2W ðB0Þ first. Let xmax2 be the

maximum x-coordinate of w2W ðB0Þ: If all of the x-

coordinates of the points w1ðB0Þ are still less than

xmax2; then it confirms the uselessness of computing

w1ðW ðB0ÞÞ: On the contrary, we perform w1ðW ðB0ÞÞ to
check whether xmax2 is still the supreme x-value of

W 2ðB0Þ: In this way, we can build a dynamic program-

ming algorithm as the following pseudocode.

BboxIFS(W, Epsilon, MaxLayer)

f
/nEach mapping w[i] in the IFS W is composed of six coefs:

a½i�; b½i�; c½i�; d½i�; e½i�; f ½i� as equation-2*/
/nCalculate the initial BBox*/

S ¼ MaxðMaxðja½i�j þ jb½i�jÞ; Maxðjc½i�j þ jd½i�jÞ
E ¼ Maxðje½i�jÞ
F ¼ Maxðjf ½i�jÞ
K ¼ ðEþ FÞ=ð1-SÞ
Box ¼ ðK; -K;K; -KÞ
IdentMap ¼ ½1; 0; 0; 1; 0; 0�

/nRefine the BBoxn/

while(1)

f
XMax ¼ XMaxAtLayerNðIdentMap; 1Þ
XMin ¼ XMinAtLayerNðIdentMap; 1Þ
XMax ¼ YMaxAtLayerNðIdentMap; 1Þ
XMax ¼ YMinAtLayerNðIdentMap; 1Þ
NewBox ¼ ðXmax; XMin; YMax; YMinÞ
if ðBox-NewBoxoEpsilonÞ
break

else

Box ¼ NewBox

g
return NewBox

g
XMaxAtLayerN(CurMap, Layer)

f
/n We need another set of mappings t[i] for the

combination of wnwn
y

nwn=
if (CurMap has not been visited)

f
for i ¼ 1 to n

f
t½i� ¼ CurMapnw½i�
apply the mapping t[i] to the four corners of Box,

denoted as t[i](Box)

compute the max x-coordinates of t[i](Box),

denoted as SubXMax[Layer][i]

g
g
else

f
ðXMax; iÞ ¼ MaxðSubXMax½Layer�½1�;y;
SubXMax½Layer�½n�Þ

t½i� ¼ CurMapnw½i�
Update t[i](Box) and SubXMax[Layer][i]

g
ðXMax; iÞ ¼ MaxðSubXMax½Layer�½1�;y;
SubXMax½Layer�½n�Þ

if ðLayer ¼¼ MaxLayerÞ return XMax

SubXMax½Layer�½i� ¼ XMaxAtLayerNðt½i�;Layerþ 1Þ
ðXMax; jÞ ¼ MaxðSubXMax½Layer�½1�;y;
SubXMax½Layer�½n�Þ

return XMax

g
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Before we preform the function BboxIFS( ), we have

to verify if Eq. (13) holds for each mapping in the IFS

W : If there exists some mapping for which Eq. (13) does

not hold, we have to compute an equivalent IFS instead.

For convenience, we compute the supreme values of x

and y values separately in BboxIFS( ), and we only

represent the routine XMaxAtLayerN( ) here. The three

other routines XMinAtLayerN( ), YMaxAtLayerN( ),

and YMinAtLayerN( ) are similar. The routine XMax-

AtLayerN( ) represents the structure of dynamic pro-

gramming for recursively computing the supreme values.

It’s noticeable that the computed values Sub-

XMax[Layer][i] have to be saved for the use in the next

iteration. Only the mappings that provide current

supreme values are updated recursively.

4. Experimental results

We have computed bounding boxes for the fractals

‘‘dragon’’, ‘‘coral’’, and ‘‘fern’’ with the parameters

Epsilon ¼ 0:0001; and Maxlayer ¼ 100: For comparison,

we have also computed the bounding balls for these

fractals using Hart and DeFanti’s algorithm. Table 5 lists

the corners of the computed bounding boxes, the origins

and the radii of the computed bounding balls. Also the

area values of these two kinds of bounding extent are

listed. The results show that the areas of the computed

bounding boxes are much smaller than those of the

bounding balls by using Hart and DeFanti’s algorithm.

5. Conclusion

We have proposed an algorithm to compute the tight

bounding boxes of the attractors of iterated function

systems. Firstly we compute a loose initial bounding box

by a simple equation. If the initial box is not available,

we have to decompose the iterated function system.

Then we refine the bounding box until a predefined

condition is reached. The computed bounding boxes are

so tight that we can minimize the required space of

drawing fractals. Using the bounding box algorithm, we

have two choices. We only need to compute once the

very tight bounding boxes with strict conditions (small

epsilon and deep layers), the computed bounding box

can then be permanently associated with its IFS code.

Or we can compute a bounding box with loose

conditions (larger epsilon and fewer layers) in real-time

applications.
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Appendix. The proof of the success of the initial box B0

In Theorem 4, we give an upper bounding box B ¼
ð	K ;K ;	K ;KÞ; and we claim W ðB0ÞCB0 holds. We

have to show that for any point p ¼ ðx; yÞAR2; 	
Kpx; ypK ; then the x- and y-coordinates of W ðpÞ lie in
the interval ½	K ;K �: That is, for any point ðx0; y0Þ ¼ q ¼
wiðpÞ; i ¼ 1yn; 	 Kpx0; y0pK :
(a) We illustrate x0pK by using the notations as

defined in Theorem 4.

B0

…w1(B0) w2(B0) wn(B0)

w1w1 (B0) w1w2 (B0)

…
w1wn (B0)

. . .
wnw1 (B0) wnw2 (B0)

…
wnwn (B0)

Layer-1

Layer-2

Layer-0

Fig. 5. Transformed sub-boxes of an initial bounding box for two layers.

Table 5

Computed areas of the proposed algorithm and Hart’s algorithm

Fractal Proposed bounding box algorithm Hart’s bounding ball algorithm

ðXmin; Xmax; Ymin; YmaxÞ Area value Origin ðX ;Y Þ; Radius Area value

Dragon ð	6:20; 6:15;	0:21; 10:11Þ 127.45 (2.17, 4.31), 19.41 1183.59

Coral ð	4:95; 5:00;	0:10; 10:03Þ 100.79 (0.46, 5.01), 11.43 410.43

Fern ð	2:18; 2:66; 0; 10:00Þ 48.40 (0.03, 1.44), 9.28 270.55
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_ x0 ¼ aix þ biy þ ei and jxjpK ;

‘ x0 pjai jjxj þ jbi jjyj þ jei j;

‘ x0p jai jK þ jbi jK þ E

¼ ðjai j þ jbi jÞK þ E

¼ ðjai j þ jbi jÞ
E þ F

1	 S

� �
þ E

¼
ðjai j þ jbi jÞðE þ FÞ þ Eð1	 SÞ

1	 S

¼
ðjai j þ jbi j 	 SÞE þ E þ ðjai j þ jbi jÞF

1	 S

¼
E þ ðjai j þ jbi jÞF

1	 S
þ

ðjai j þ jbi j 	 SÞE
1	 S

p
E þ ðjai j þ jbi jÞF

1	 S

since jai j þ jbi jpSo1 81pipn; so

ðjai j þ jbi j 	 SÞE
1	 S

p0

) x0p
E þ F

1	 S
¼ K :

(b) Similarly, we illustrate 	Kpx0 as follows.

_ x0 ¼ aix þ biy þ ei and jxjpK ;

‘ x0
X	 jai jjxj 	 jbi jjyj 	 jei j;

‘ x0
X 	 jai jK 	 jbi jK 	 E

¼ 	 ðjai j þ jbi jÞK 	 E

¼ 	 ðjai j þ jbi jÞ
E þ F

1	 S

� �
	 E

¼ 	
ðjai j þ jbi jÞðE þ F Þ þ Eð1	 SÞ

1	 S

¼ 	
ðjai j þ jbi j 	 SÞE þ E þ ðjai j þ jbi jÞF

1	 S

¼ 	
E þ ðjai j þ jbi jÞF

1	 S
	
ðjai j þ jbi j 	 SÞE

1	 S

X 	
E þ ðjai j þ jbi jÞF

1	 S

since jai j þ jbi jpSo1 81pipn; so

	
ðjai j þ jbi j 	 SÞE

1	 S
X0

) x0
X	

E þ F

1	 S
¼ 	K :

From (a) and (b), 	Kpx0pK is proved. Similarly, we

can show that 	Kpy0pK : Thus we have proved the

transformed point q ¼ wiðpÞ is in the box B ¼
Boxð	K ;K ;	K ;KÞ; hence the condition W ðB0ÞCB0

holds.
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