PERGAMON

Computers & Graphics 27 (2003) 407-414

COMPUTERS
&GRAPHICS

www.elsevier.com/locate/cag

Technical section

On bounding boxes of iterated function system attractors
Hsueh-Ting Chu, Chaur-Chin Chen*

Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, ROC

Abstract

Before rendering 2D or 3D fractals with iterated function systems, it is necessary to calculate the bounding extent of
fractals. We develop a new algorithm to compute the bounding box which closely contains the entire attractor of an

iterated function system.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords.: Fractals; Iterated function system; IFS; Bounding box

1. Introduction

Barnsley [1] uses iterated function systems (IFS) to
provide a framework for the generation of fractals.
Fractals are seen as the attractors of iterated function
systems. Based on the framework, there are many
algorithms to generate fractal pictures [1-4]. However,
in order to generate fractals, all of these algorithms have
to estimate the bounding boxes of fractals in advance.
For instance, in the program Fractint (http://spanky.
triumf.ca/www/fractint/fractint.html), we have to guess
the parameters of “image corners” before the beginning
of drawing, which may not be practical.

For this reason, this paper is devoted to develop a
practical bounding box algorithm. A good bounding
algorithm is also a priori for rendering 3D fractals. Hart
and DeFanti [5] use bounding spheres in their system of
3D fractal rendering. Sometimes the bounding spheres
are very loose such that the rendering of common
fractals may be inefficient. Most of 3D computer
graphic systems employ bounding boxes for rendering
objects. Thus, it is important to develop a tight
bounding box algorithm for rendering fractal objects
in a 3D system.

*Corresponding author. Tel.: + 11-886-3-573-1078; fax: + 11-
886-3-572-3694.
E-mail address: cchen@cs.nthu.edu.tw (C.-C. Chen).

1.1. Iterated function systems

Definition 1. A transform f: X — X on a metric space
(X,d) is called a contractive mapping if there is a
constant 0<<s<1 such that

d(f(X),f(y))<s) d(-xay) V)C,yGX, (1)

where s is called a contractivity factor for f.

Definition 2. In a complete metric space (X,d), an
iterated function system (IFS) [1] consists of a finite set
of contractive mappings w;, for i = 1,2, ...,n, which is
denoted as W = {X;wi,wy, ..., w,}.

In this paper, we assume contractive affine transforms
in an iterated function system. A contractive affine

transform w in R? is

X a b||x N e N e @
w =

y c d||y S S

and a contractive affine transform w in R> is

X

y

=A

X a b c t
wl |y =|d e f + |u
z i j k||z v
X t
=Al|ly|+ |ul, 3)
iR

0097-8493/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0097-8493(03)00035-9

http://spanky.triumf.ca/www/fractint/fractint.html
http://spanky.triumf.ca/www/fractint/fractint.html

408 H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407414

where the eigenvalues of the matrix 4 have magnitude
less than 1.

Theorem 1 (Barnsley [1]). Let f': : X > X be a contrac-
tive mapping in a complete metric space (X,d). Then
possesses a unique fixed-point x;e X, and for any xe X,
the Cauchy sequence {f"(x)} converges to Xy, where

S = "N (), and fO(x) = x.

In a Hausdorff metric space (H(X), i(d)), an IFS, W,
is also a contractive mapping, thus it possesses a
unique fixed-point, called the attractor of the IFS.
Tables 1-3 list the 2D IFS codes of fractals given by
the program Fractint, which generate the ‘“dragon”,
“coral”, and “fern” fractal objects [1], respectively.
Fig. 1 shows a picture of these fractal objects. We
will compute the bounding boxes of these IFS codes
later.

Lemma 1. Let W = {X; wy,wa,...,w,} be an iterated
Sfunction system. Let A be the attractor associated with W
on (H(X),h(d)), and let z\, z3, ..., z, be the fixed points of
Wi, Wa, ..., Wy, respectively, on (X,d). Then z;e A for
i=1,2, ...,n

Proof. z; = w°(z;) since z; is the fixed point of w;, hence
z;e W*({z;}). By Theorem 1, W*({z;}) = A. Hence
zZie WU:({Z,})ZA O

Theorem 2. Let W = {X; wy,wa,...,w,} be an iterated
function system. Let A be the attractor associated with
W, and zeA. Then the attractor A is equal to
{ZuiWEI V@)U U ”(2)).

Proof. (a) By Theorem 1, {W*(z)} = A. Hence,
AS{Zb Ui} U@} U VI (2)} 4)

(b) We know zed, then all the sets
(AW @)L, (V@)L .., AW (2)} S 4. Thus,

(Z O UIE) U VIV (2)) S 4. &)

From (a) and (b), A={z}u{W(2)}u{W?3(z)}
U u{W*(z)}. O

(a)

(b)
Fig. I. The attractors of the 2D IFS codes in Tables 1-3.

Theorem 2 indicates that the entire attractor can be
generated by applying the IFS on some point ze A
iteratively. Thus, it provides a formula to represent all the
points in the attractor as 4 = {p|p = t113...t.(2), t;€ {wy,
w2, ..., w,} and z is the fixed-point of some mapping w;}.

1.2. Previous work

Let W = {X;wi,wy,...,w,} be an iterated function
system on X, and let A4 be the attractor associated with
W. We try to find the bounding volume of the attractor
A. In the literature, only bounding ball algorithms were
developed [5-8] for IFSs. A bounding ball is also called a
bounding circle in a 2D space or a bounding sphere in a
3D space.

Canright [6] uses multiple bounding balls to envelop
the entire attractor of an IFS. Let z,zp,...,z, be
the fixed points of wy,ws,...,w, on (X,d), and let
S1,52, ..., S, be the contractivity factors of wy, wy, ..., wy,
respectively. They seek n balls C; centered on z;, 1<i<n
such that w(4)= C;, then A= |J_, C;. The radii {r;} are
chosen to satisfy [6]

ri=; m;'&ax(rj +d(z;,z)), 1<i<n. ©6)
J#i

Fig. 2 illustrates Canright’s bounding balls for the fern.
In order to enclose Canright’s balls, a large bounding
box B= Box(xmins Xmaxs Ymins ymax) = (_1424> 1916’
—9.36,26.70) is necessary. We mark the minimum
bounding box of the fern with dotted lines in the figure,
then the computed bounding box by Canright’s algo-
rithm is too loose in practice. However, Canright
provided a very simple and fast solution to compute a
bound for drawing fractals.

Hart and DeFanti [5] introduced another bounding
ball algorithm. Only one bounding ball is computed to
enclose the attractor of an IFS in their algorithm. Initially
the ball C is the unit ball at the origin, then the ball is
moved and enlarged to envelop the entire attractor
iteratively. The next ball C* in the sequence is found as

n

=13 W) ™

i=1

H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407414 409

Fig. 2. Canright’s bounding balls for fern.

and

r* = max (sir + d(wi(0),0")), ®)

where o and r are the origin and radius of ball C and
likewise for ball C*.

We show the bounding ball for the fern computed by
Hart’s algorithm in Fig. 3. The origin and radius of the
ball C* are (0.03, 1.44) and 9.28, respectively. Compared
with Canright’s algorithm, Hart’s algorithm obtains a
better result in this case. Rice [8] tries to improve Hart’s
algorithm by optimizing the radius r. The effort made by
Rice has little improvement in this case because the
computed radius for the fern, by Hart’s algorithm, is
close to the optimal radius.

Though many researchers have developed bounding
ball algorithms as shown above, the minimum bounding
boxes of the fern in Figs. 2 and 3 are much smaller than
the computed bounds. Thus, we try to develop a

Fig. 3. Hart’s bounding ball for fern.

bounding box algorithm instead. We desire to acquire a
very tight bounding volume instead of a loose one.
However, there are many of problems we have to
overcome. In the next section, we consider these
problems and their solutions. For convenience, we
consider the bounding problem in 2D cases. In Section
3, the new algorithm is presented. We show experimental
results in Section 4. Finally, conclusions are drawn in
Section 5.

2. Bounding boxes for IFS attractors

The advantage of a bounding ball algorithm is that it
can handle rotations. It is a complex problem we have to
resolve when developing a bounding box algorithm
instead. An affine transformation is composed of
translation, scaling, and rotation. Thus a 2D contractive
affine transform of Eq. (2) can be rewritten as

X sccosO sysinf || x e
w =) + > ©)
y —scsinf s,cosO| |y

A
where [s¢|<1 and |s,|<1.
For example, let 0 = n/4, sy =5, =09, 0y =0, =0,
then

() | R A

In this case, we will always obtain a smaller ball after
applying w. Here the new radius is 0.9 of the original,
but we may need a larger box to enclose the transformed
box. Fig. 4 shows the transformation of a box with w. A
square with the length of sides 1.28 is necessary to
enclose the transformed unit square. As a result, given
an arbitrary initial box By, W(B;) may exceed the
extent of By, for an IFS W. On the contrary, it would be
more tractable if we could find an initial box By such
that W(By)< By. Assuming this hypothesis is true, By
will be a loose bounding box of the attractor of W. We
can find a tight bounding box of the attractor of W by
refining B, iteratively according to the following
theorem.

2.1. Basic theory

Theorem 3. Let W = {R*, wy,wa, ..., w,} be an iterated
function system of affine mappings in R*>. Let By =
BOX(Xmin: Xmaxs yminsymax) = {(X, y)E Rz | Xmin <x<xmax
and Vimin <V <Vmax} be an arbitrary box satisfying the
following condition

W(By) < By. (11)
Then
Wi(By)c Wi\ (By), for ix1. (12)

410 H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407414

(0.64,0.64)
0,1) 1,1 / \
(0,0) (0.1.28)
affine mappping w g \ /
(0,0) (1,0) (0.64,-0.64)

Fig. 4. An example of transforming a box with an affine mapping w.

Proof. We prove this by induction. When k=1,
W(By)c W5 1(By) by Eq.(10). Assume W*(By)
< Wk=1(By) holds for some k > 1. We attempt to prove
W +1(By) = W¥(By). Because W*(By)c W 1(By), thus
for any point pe WX(By), it implies pe W*~!(By).
Therefore, W(p)e W¥(By). Hence W*t!(By)<= WX(By).
In consequence, the theorem is proved. [

Definition 3 (Minimum bounding box). Let Sc R” be a
subset of R?, the minimum bounding box M(S) of S
is a box BoxX(Xpin, Xmaxs Ymins Ymax) = {(X, y)€R2 | Xpmin <
X< Xpmax and Viin <V <Vmar) that contains the supreme
values of coordinates of points in S. That is, for any
point (xpaJ/p)ES, Xmin < Xp < Xpax and Ymin < YVp < Ymaxs
and there exist four supreme points pi,p2,p3 and
17465 such that Xpy = Xmins Xpy, = Xmax> Vps = Vmin and

Yoy = Vmax-

Let the minimum bounding box of Wi~!(B;) be
M(Wil (B0))=BoxX(Xmin> Xmax; Ymin>Ymax), then Wiil(BO)
< M(W'=1(By)). On the other hand, Wi(By)< Wi~ (By)
implies W' (By) = M(W'~'(By)) by Theorem 3. Therefore
the supreme values of M(W~!(By)) are bounded by the
rectangle of (Xmina Xmaxs yminsymax)~ This means that
M(Wi(By)) = M(W~1(By)) which implies that we will
get smaller boxes as we continuously apply the IFS
operator W on an initial box By, if the condition
W(By) < By holds. Let 4 be the attractor of the IFS W,
we know W*(By) = A by Theorem 1. Therefore, the
sequence {M(Wi(By))}, converges to the minimum
bounding box M(A) of the attractor 4.

2.2. Existence of an initial box

Assume a box By is found, and the condition
W (By) < By holds. Then the box By is a loose bounding

box of the attractor of the IFS W. This allows us to
generate tighter bounding boxes when we iteratively
apply W on By. This hypothesis however is based on the
existence of the initial box By. Does a box By such that
the condition W(Bjy)<= By holds for any IFS W exist?
The answer is negative. For instance, we cannot find
such a box for the IFS code of the fractal “dragon” in
Table 1. However, we can ensure the hypothesis holds
for some IFSs under a certain restriction described
below.

Theorem 4. Let W = {R*, w, w2, ..., w,} be an iterated

function system of affine mappings in R>. The affine

mappings are

X a; bi||x e
(G- LSl
If we assume that
lail + 1bil <1, el +1dil<1 fori=1,...,n, (13)
then there exists a box By such that W(By)< By.
Proof. We prove this by finding a box that obeys the

condition W(By)< By. We check the absolute values of
the coefficients of the mappings {w;}. Let

S = max {max{la;| + |bil, |c;| + |dil}}, (14a)
I1<i<n

E = max lel, (14b)
1<i<n

F = max [fj| (14c)
1<i<n

and
E+F

K = -5 (15)

Then, the box B = B()X(Xm,'", Xmaxs Vmin» ymax) = (_K’ K;
—K, K) will be such a box that the condition W (By) < By

Table 1

IFS code for dragon

wi a; b; ci d; e; Ji

1 0.824074 0.281482 —0.212346 0.864198 —1.882290 —0.110607
2 0.088272 0.520988 —0.463889 —0.377778 0.785360 8.095795

H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407-414 411

holds. The verification of this success is given in the
appendix. [

Eq. (13) holds for the affine maps of the IFS codes for
the fractals “coral” and ‘““fern” in Tables 2 and 3. Hence,
we can find an initial box By with Eq. (15), then refine
the box into a very tight bounding box as M(W"(By)),
where m is a large number. However, Eq. (13) does not
hold for the fractal ‘“dragon”. We overcome this
problem by Theorem 5 listed below.

Definition 4. Let W;, W, be two iterated function
systems of affine mappings in R?, and let A4;, A4, be
the attractors associated with W, W), respectively. We
say that W, W, are equivalent if 4, A, are identical.

Theorem 5. Let W = {R*; w1, W, ..., w,} be an iterated
function system of affine mappings in R>. Let f; = wiw;,
for i=1,2,...,n. Then the IFS W' = {R*f1,/>,[n
W, ..., Wy} is equivalent to W.

Proof. Let 4 and A’ be the attractors of IFSs W,
and W', respectively. Let z be the fixed point of w;.
Then zeA4 by Lemma 1. Also by Theorem 1, there
exists an integer k, such that z = w%k(z) = flk(z). Thus
zeA', too. Thus by Theorem 2, the attractors
are A= {z} U{W(E)} U {WX2)}u---U{W*(2)} and
A =z W@V} U U {7 (2)).

(a) For any point pe A, there exists an integer ¢
such that peWz). Let p=rtt...t.(z) where
tie{wi,wa,...,w,}. We scan the sequence ¢,¢;...¢., and
transfer the pattern ¢, into f; if ¢; = wy and t;,| = wy.
If z. = wy and 7,_; #w, then we can transfer ¢, into f1, as
wi(z) = w%(z) =z. Consequently, we can rewrite
tity...t(z) as wuy...ug(z) where w;e{fi,fo, ..., [n
Wa, ..., w,}. Hence pe W'(z) and peA'.

(b) For any point pe A’, there exists an integer d
such that peW"(z). Let p=uu...us(z) where
ui € {f1,/2 .-+ fns W2, ..., wy}. It is apparent by definition
that there exists an integer ¢ such that p = t1;...1.(2),
where ;€ {w,wy, ..., w,}. Thus pe A.

By (a) and (b), the attractors A4 and A’ are
identical. O

Given an IFS W = {R%wi,wy,...,w,}, We can
decompose the affine mapping w; into (w;wy, wiws, ...,
wiwy), if Eq. (13) does not hold for w;. Thus forming a
new IFS, W', that is equivalent to the original IFS.
Moreover, we can iteratively apply this decomposition
procedure until Eq. (13) holds for all of affine mappings.
Because all the affine mappings in W are contractive, the
decomposition procedure always succeeds. For example,
we can decompose the affine mapping w; of the IFS for
the “dragon”in Table 1 into (wiwywy, wiwiwa, wiwy),
and the new IFS W’ = {R%; wiwwi, wiwiwa, wiwa, wa}
is equivalent to the original IFS W = {R>;w,, w,}. Table 4

Table 2

IFS code for coral

Wi ai b; Ci d; €i fi

1 0.307692 —0.531469 —0.461538 —0.293706 5.401953 8.655175
2 0.307692 —0.076923 0.153846 —0.447552 —1.295248 4.152990
3 0 0.545455 0.692308 —0.195804 —4.893637 7.269794
Table 3

IFS code for fern

Wi a; b,‘ Ci d} € f!

1 0 0 0 0.16 0 0

2 0.85 0.04 —0.04 0.85 0 1.6
3 0.2 —0.26 0.23 0.22 0 1.6
4 —0.15 0.28 0.26 0.24 0 0.44
Table 4

Equivalent IFS code for dragon

Wi a; b; Ci d; € fi

1-a 0.409460 0.585012 —0.441325 0.492851 —4.682884 0.792306
1-b —0.165779 0.143135 —0.350368 —0.446332 0.869093 5.474304
1-c —0.057834 0.322995 —0.419636 —0.437105 1.043725 6.718995
2 0.088272 0.520988 —0.463889 —0.377778 0.785360 8.095795

412 H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407-414

lists the new IFS code W’ for the fractal “dragon”. Since
Eq. (13) holds for all of affine mappings in W', we can
compute a tight bounding box of the fractal “dragon™
using Theorem 3.

3. The new algorithm

As we have seen in the previous section, we are able to
find a tight bounding box of the attractor 4 of an affine
IFS W. Given a box By such that W(By)e By, we know
that the sequence {M(W'(By))}", converges to the
minimum bounding box M(A4) of the attractor A.
Thus Wi(B,) with large i values will be close to M(A).
Let the corners of By be by, by, b3,bs. Then the
supreme values of the x- and y-coordinates of points
in Wi(By) will fall in Wi({by,b,,b3,bs}). Thus, we
compute Wi({by,br,b3,bs}) to find the bounding
box M(Wi(By)). However, the computation of
Wi({by,bs,b3,bs}) is expensive. It requires exponential
time. For example, the computation for a tight
bounding box M(W'({h1,b2,b3,b4})) of the fractal
“fern” in Table 3 needs to compute 4 x 4!% points
(corners) which is not feasible by exhaustive computa-
tions. Fortunately, the computations for most of the
points are redundant, and can be reduced using the
following lemma.

Lemma 2. Let W = {R*;w,w, ..., w,} be an iterated
function system of affine mappings in R*>. Let By be an
arbitrary box and W(By) < By. Then

wi (W (B))Swi (W (By)), for iz, j=1,...n.
(16)

Proof. This lemma is a natural extension of Theorem 3,
because Wi(By)< W~!(By) implies that w;(Wi(By))<
w_,»(W"’l(BO)). O

Fig. 5 shows a tree representation of computing
W?2(By). Let xmax, be the maximum x-coordinate of
W(By) that comes from one of the x-coordinates of
wy(By). Then the x-coordinates of the points wi(By)
are all less than xmax;. Moreover, by Lemma 2, the
x-coordinates of points in wy W (By) = {wiw(By),
wiwa(By), ..., wiwu(By)} are always less than xmax,
too. As a result, the computation of w; W (By) may be
unnecessary for the supreme x-value of W?2(By). There-
fore, we compute w, W(By) first. Let xmax, be the
maximum Xx-coordinate of wyW(By). If all of the x-
coordinates of the points w;(By) are still less than
xmax,, then it confirms the uselessness of computing
wi(W(By)). On the contrary, we perform w;(W(By)) to
check whether xmax, is still the supreme x-value of
W?2(By). In this way, we can build a dynamic program-
ming algorithm as the following pseudocode.

BboxIFS(W, Epsilon, MaxLayer)
{
/*Each mapping wli] in the IFS W is composed of six coefs:
ali], b[i], c[i], d[i], e[i], fi] as equation-2x/
[*Calculate the initial BBox */
S = Max(Max(|a[i]| + [b[2]]), Max(|c[i]| + |d[]])
E = Max(l¢[i])
F = Max(|f[7]))
K =(E+F)/(1-S)
Box = (K, -K, K, -K)
IdentMap =1,0,0,1,0,0]
/*Refine the BBox*/
while(1)
{
XMax = XMaxAtLayerN(IdentMap, 1)
XMin = XMinAtLayerN(IdentMap, 1)
XMax = YMaxAtLayerN(IdentMap, 1)
XMax = YMinAtLayerN(IdentMap, 1)
NewBox = (Xmax, XMin, YMax, YMin)
if (Box-NewBox < Epsilon)
break
else
Box = NewBox
}
return NewBox
}
XMaxAtLayerN(CurMap, Layer)
{
/¥ We need another set of mappings t[i] for the
combination of w*w*... *w*/
if (CurMap has not been visited)
{

fori=1ton

f
1

t[i] = CurMap™*w][i]
apply the mapping t[i] to the four corners of Box,
denoted as t[i]J(Box)
compute the max x-coordinates of t[i](Box),
denoted as SubXMax[Layer][i]
}
}
else
{
(XMax, i) = Max(SubXMax[Layer][1], ...,
SubXMax[Layer][n])
t[i] = CurMap*wli]
Update t[iJ(Box) and SubXMax[Layer][i]
}
(XMax, i) = Max(SubXMax[Layer][1], ...,
SubXMax|[Layer][n])
if (Layer == MaxLayer) return XMax
SubXMax[Layer][i] = XMaxAtLayerN(t[i], Layer + 1)
(XMax, j) = Max(SubXMax[Layer][1], ...,
SubXMax[Layer][n])
return XMax

H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407—414 413

B,

T

w,(Bg) W,(By)

wiw, (Bg) wiw, (Bg) wyw, (By)

Layer-0

W,(Bo) Layer-1

>N

wwy (Bg) WW, (By)

ww, (B, Layer-2

Fig. 5. Transformed sub-boxes of an initial bounding box for two layers.

Table 5

Computed areas of the proposed algorithm and Hart’s algorithm

Fractal Proposed bounding box algorithm Hart’s bounding ball algorithm

(Xonins Xonax> Ymins Ymax) Area value Origin (X, Y), Radius Area value
Dragon (—6.20,6.15,-0.21,10.11) 127.45 (2.17, 4.31), 19.41 1183.59
Coral (—4.95,5.00,—0.10, 10.03) 100.79 (0.46, 5.01), 11.43 410.43
Fern (—2.18,2.66,0,10.00) 48.40 (0.03, 1.44), 9.28 270.55

Before we preform the function BboxIFS(), we have
to verify if Eq. (13) holds for each mapping in the IFS
W. If there exists some mapping for which Eq. (13) does
not hold, we have to compute an equivalent IFS instead.
For convenience, we compute the supreme values of x
and y values separately in BboxIFS(), and we only
represent the routine XMaxAtLayerN() here. The three
other routines XMinAtLayerN(), YMaxAtLayerN(),
and YMinAtLayerN() are similar. The routine XMax-
AtLayerN() represents the structure of dynamic pro-
gramming for recursively computing the supreme values.
It’'s noticeable that the computed values Sub-
XMax[Layer][i] have to be saved for the use in the next
iteration. Only the mappings that provide current
supreme values are updated recursively.

4. Experimental results

We have computed bounding boxes for the fractals
“dragon”, “coral”, and “fern” with the parameters
Epsilon = 0.0001, and Maxlayer = 100. For comparison,
we have also computed the bounding balls for these
fractals using Hart and DeFanti’s algorithm. Table 5 lists
the corners of the computed bounding boxes, the origins
and the radii of the computed bounding balls. Also the
area values of these two kinds of bounding extent are
listed. The results show that the areas of the computed
bounding boxes are much smaller than those of the
bounding balls by using Hart and DeFanti’s algorithm.

5. Conclusion

We have proposed an algorithm to compute the tight
bounding boxes of the attractors of iterated function

systems. Firstly we compute a loose initial bounding box
by a simple equation. If the initial box is not available,
we have to decompose the iterated function system.
Then we refine the bounding box until a predefined
condition is reached. The computed bounding boxes are
so tight that we can minimize the required space of
drawing fractals. Using the bounding box algorithm, we
have two choices. We only need to compute once the
very tight bounding boxes with strict conditions (small
epsilon and deep layers), the computed bounding box
can then be permanently associated with its IFS code.
Or we can compute a bounding box with loose
conditions (larger epsilon and fewer layers) in real-time
applications.

Acknowledgements

The authors would like to express the deepest
gratitude to the anonymous reviewers for their valuable
comments, which were very useful in improving the
presentation of this article.

Appendix. The proof of the success of the initial box B,

In Theorem 4, we give an upper bounding box B =
(=K, K;—K,K), and we claim W(By)< By, holds. We
have to show that for any point p = (x,y)eR?, —
K <x,y<K, then the x- and y-coordinates of W(p) lie in
the interval [K, K]. That is, for any point (x',)) = ¢ =
wi(p), i=1...n, — K<X,y'<K.

(a) We illustrate X’ <K by using the notations as
defined in Theorem 4.

414 H.-T. Chu, C.-C. Chen | Computers & Graphics 27 (2003) 407414

X =ajx+bjy+e and |x|<K,
X <laillx| + |billyl + leil,

S X< ailK + |bilK + E
=(lai| + |b:DK + E

= (il + |bf|>(ﬂ) VE

1-S
_ (al + 16iD(E+ F) + E(- S)
1-S
_ (ail + 1bil = SYE + E + (lail + [biDF
1-8
_E+(al+1biDE (lail + |bil = SE
1-8 1-S
<Et (ol + biDF
1-S

since |a;| + |b;|<S<1 VI<i<n, so
il + o]~ HE_,
1-S

(b) Similarly, we illustrate —K <x' as follows.

X =aix+bjy+e and |x|<K,

X = = laillx] = |billy] = leil,

" X’> - |a,-|K - |b,|K —F
= — (lail + 1b:DK — E

- —(|af|+|bl-|>(E+F) _E

1-S
(@l +1BE+ F)+ E1 - S)
- 1-S

_ (ail + 1bil = S)E + E + (lail + |bi)F
- 1-S

E+(ail+16iDF (ail + |bi| — S)E

1-S 1-S
> _E+Qailt bDF
1-S

since |a;| + |b;]<S<1 VI<i<n, so
 (lai| 4 16| — S)E>0
1-S
E+F
=x>-="1"—_K.
Y2 TS
From (a) and (b), —K<x’ <K is proved. Similarly, we
can show that —K<)'<K. Thus we have proved the
transformed point ¢ =w;(p) is in the box B=
Box(—K,K;—K,K), hence the condition W(By)< By
holds.

References

[1] Barnsley MF. Fractals everywhere, 2nd ed. New York:
Academic Press, 1993.

[2] Bell S. Fractals: a fast, accurate and illuminating algorithm.
Image and Vision Computing 1995;13(4):253-7.

[3] Chu HT, Chen CC. A fast algorithm for generating fractals.
Proceedings ICPR’2000. Barcelona, Spain, 2000. p. 306-9.

[4] Monro DM, Dudbridge F. Rendering algorithms for
deterministic fractals. IEEE Computer Graphics and
Applications 1995;15(1):32-41.

[5] Hart JC, DeFanti TA. Efficient anti-aliased rendering of 3D
linear fractals. Computer Graphics 1991;25(4):91-100.

[6] Canright D. Estimating the spatial extent of attractors of
iterated function systems. Computers and Graphics
1994;18(2):231-8.

[7] Edalat A, Sharp DWN, While RL. An upper bound on the
area occupied by a fractal. Proceedings ICASSP’95. 1995.
p. 2443-6.

[8] Rice J. Spatial bounding of self-affine iterated function
system attractor sets. Proceedings of the Conference of
Graphics Interface GI'96. 1996. p. 107-15.

	On bounding boxes of iterated function system attractors
	Introduction
	Iterated function systems
	Barnsley [1]
	Previous work

	Bounding boxes for IFS attractors
	Basic theory
	Minimum bounding box
	Existence of an initial box

	The new algorithm
	Experimental results
	Conclusion
	Acknowledgements
	Appendix
	The proof of the success of the initial box B0
	References

