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Image data compression by fractal techniques has been widely investigated. Al-
though its high compression ratio and resolution-independent decoding properties are at-
tractive, the encoding process is computationally demanding in order to achieve an op-
timal compression. A variety of speed-up algorithms have been proposed since Jacquin
published a novel fractal coding algorithm. Unfortunately, the quantization strategy of
scaling coefficients and the programming techniques lead to the results reported by dif-
ferent researchers are various even on the same image data which causes the speed-up of
compression is incomparable. This paper proposes a real-time fractal decoder as a stan-
dard. We report the implementation results of a nearly optimal encoding algorithm OPT
on commonly used images: Jet, Lenna, Mandrill, and Peppers of size 512×512. An ac-
celerating compression algorithm using maximum gradient MG is shown to be 1300
times faster than OPT with a slight drop of PSNR value when encoding a 512×512 im-
age.
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1. INTRODUCTION

Data compression plays an important role in image analysis and transmission. The
goal of image compression is to reduce storage space and to save transmission time. As
media communication grows, image data compression attracts an increasing interest.
Traditional transform coding techniques such as Karhunen Loeve transform, Walsh-Ha-
damard transform, and singular value decomposition techniques [15] used in 1970s and
1980s have been gradually replaced by new techniques. In 1990s, image compression
algorithms based on wavelet transforms [2, 9, 18, 20, 27, 28], discrete cosine transform
[24], vector quantization [10, 19, 22, 23, 26], and fractal approaches [1, 3-5, 12, 13, 25,
29] are widely investigated. A comparison of their advantages and disadvantages can be
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can be found in [7]. This paper reports fractal-based image compression algorithms. The
goal is to reveal the characteristics of small image blocks like 8×8 and to establish a
simple fractal decoder and tries to build a simple fractal encoder.

Fractal encoding based on iterated function system (IFS) [1, 5, 11, 13] has been an
active research field since the late 1980s. The main advantage of IFS-based fractal en-
coding is to avoid blockiness in achieving a high compression ratio by using the resolu-
tion-independent decoding property. Although fractal compression is an attractive tech-
nique, it faces some serious problems. First, fractal encoding is slow due to the tremen-
dous amount of computations. Second, the existence problem of perfect domain-range
matches in a fractal coding has not been proved yet. Third, the performance need be
compared with a recently issued state-of-the-art compression algorithm based on wavelet
transform [27, 28, 34].

This article reports experimental results on commonly used gray level images: Jet,
Lenna, Mandrill, and Peppers by an optimal fractal compression algorithm and a simple
accelerating fractal compression algorithm. The organization of this paper is as follows.
Section 2 reviews mathematical foundation of fractal coding. Section 3 discusses a re-
stricted optimal encoding algorithm. Section 4 introduces accelerating fractal compres-
sion algorithms. Section 5 demonstrates experimental results. Section 6 gives the conclu-
sion.

2. MATHEMATICAL FOUNDATION

A fractal compression algorithm is mainly based on the famous Collage theorem
and the fixed point theorem defined on a Banach space with the Hausdorff metric. We
follow Barnsley’s notations [5].

The Collage Theorem [5]: Let Z be a Banach space. Let L ∈ H(Z) be given, where H(Z)
is the set consisting of all nonempty compact subsets of Z. Let ε ≥ 0 be arbitrarily chosen.
Choose an iterated function system (IFS) of affine transformations {Z; w1, w2, …, wN}
with contractivity factor 0 ≤ s < 1 so that
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where h(.) is the Hausdorff metric. Then

h(L, A) ≤ ε, (2)

where A is the attractor of the IFS.
This theorem indicates that given a compact set L, if we can find an IFS, {w1, w2, …,

wN} such that the union, or collage, )(1 Lwi
N
i=U is close to L, then the attractor of this

IFS approximates L. In other words, L can be represented by this IFS [5].
For the application of the Collage theorem in image compression, we follow Jac-

quin’s notations [13]. Denote Z as a set of all interesting images, and define a domain
block D and a range block R as subimages of an element in Z such that the size of D is



ACCELERATING FRACTAL COMPRESSION 419

larger than that of R. In this paper, consider Z as the set of all 512×512 images with 256
possible gray levels, then Z can be regarded as the collection of all ordered 3-tuple points
of the form [x, y, f(x, y)]t, where 0 ≤ x, y ≤ 511 and 0 ≤ f(x, y) ≤ 255.

Definition: Let Z be a Banach space, and let wi: Dj → Ri be a local contraction mapping
on Z with the contractivity factor si for 1 ≤ i ≤ N. Then

τ = {wi: Dj → Ri1 ≤ i ≤ N} (3)

is called a local IFS. The number s = max{si} is called the contractivity factor of this lo-
cal IFS if 0 ≤ s < 1. Let A, B ∈ Z, Dj ⊆ A, and Ri ⊆ B, then a local IFS can be written as

τ: A → B with wi: Dj ∩ A → Ri ∩ B. (4)

Thus, a local IFS can be regarded as a mapping on the image space Z. The reason why
fractal encoding/decoding works refers to [3, 13].

In the application of image data compression for F ∈ Z, we try to find a contrac-
tion mapping, a local contractive IFS U

N
i iw1==τ with F the fixed point of τ. Some ques-

tions raised during the search of τ will be discussed in the following sections.

2.1 Fractal Encoding System

For a fractal encoding, we first partition an image into nonoverlapping m×m range
blocks (m = 8 in this paper), {Ri}, for each Ri, we look for a 16×16 domain block which
is closest to Ri in the sense of mean square errors. Suppose that there are N range blocks,
we want to find a local IFS, τ, consisting of a set of restricted local affine transforma-
tions {wi} such that

,:,
1

ijii

N

i
RDww →=

=
Uτ (5)

where wi is called a restricted local affine transformation with the union of range blocks
filling the whole image. In practical applications, we partition a digital image into
nonoverlapping square range blocks Ri of size 8×8. Each range block is encoded by a
local affine transformation wi such that Ri ≈ wi(Dj). In this paper, we consider 512×512
images with 16×16 domain blocks and 8×8 range blocks. Thus, a compressed code of an
image consists of

8

512

8

512 × = 4096 restricted local affine transformations.

2.2.1 Restricted local affine transformations

A restricted local affine transformation is a composite of three local image opera-
tors which has the form

w = ψ ο π ο ξ., (6)

where ξ, π and ψ are called spatial contraction, pixel permutation and block processing,
respectively, which are described as follows.
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Spatial contraction ξξξξ: ξ shrinks a domain block to match the size of a range block and
then translates the domain block to the position of the desired range block.

Pixel permutation ππππ: π performs a rotation and/or a reflection on a 8×8 block ξ(D),
where is one of the following eight isometries [13].
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Block processing ψψψψ: ψ performs as ψ(π(ξ(D))) = s⋅π(ξ(D)) + µ1.

How to efficiently find an optimal local IFS τ such that τ(X) ≈ X for a given image
X is the central topic of fractal image coding which is discussed in the following sec-
tions.

2.2 A Fractal Decoding Algorithm

A simple decoding algorithm is listed below.

A Decoding Algorithm
1. Input a local IFS U iw=τ and an image B.
2. Calculate C = τ(B).
3. B ← C.
4. Repeat Steps 2~3 K (K = 6 is used here) iterations until C ≈ B.
5. B is the decoded image.

3. A NEARLY OPTIMAL IFS

To find a nearly optimal transformation wi for a given range block Ri, we must
search among all possible transformed domain blocks πk(ξ(Dx,y)), k = 0, 1, …, 7, x, y = 0,
2, …, 496 to minimize d(Ri, ψ(πk(ξ(Dx,y))) and record (x, y, µ, k, s). The details are de-
scribed as follows. Given a range block R, and a transformed domain block π(ξ(D)), let
aj ∈ π(ξ(D)) and bj ∈ Rj, 0 ≤ j ≤ 63. We seek s and µ to minimize the distortion measure
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The least squares error solution gives
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To reduce the computations, the transformation ψ can be written [11] as
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where D
)

is π(ξ(D)), D is a domain block,
Ud is the mean gray-level of the domain block,
Ur is the mean gray-level of the range block.

Thus, the solution for s and µ can be calculated by
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Consider a fractal encoding for a 512×512 gray level image. We partition the image
into 64×64 = 4096 nonoverlapping 8×8 range blocks, and partition the same image into
249×249 = 62001 overlapped 16×16 domain blocks by a spacing of 2 pixels along both
row and column. In a restricted Jacquin’s optimal fractal encoding algorithm (OPT) [13],
for each range block R, we have to search a shrunken domain block ξ(D) (to match the
size of a range block) from the 8×62001 = 496008 possibilities with the minimum distor-
tion measure which is computed by the square error between R and the transformed do-
main block π(ξ(D)) by

,1))((
2

2
RDs k −+⋅ µξπ where πk is one of 8 possible isometrics [13], (11)

and the coefficients s and µ can be estimated by Eq. 8. For each match, one has to com-
pute at least 5×64 = 320 floating-point operations. To encode a 512×512 image using the
OPT algorithm, we require 320×4096×496001 operations to find the minimum distor-
tions of all domain-range matches which is extremely time consuming. Any accelerating
compressor tries to reduce the encoding time by finding a suboptimal match but lose the
quality of a decoded image as little as possible. A quadtree partition using pattern recog-
nition and clustering techniques is commonly used [12]. However, the quadtree approach
uses various sizes of domain and range blocks whose speed-up and performance are in-
comparable with the OPT algorithm using fixed sizes of domain and range blocks. An-
other inconvenience of using quadtree approach is that the encoded image may have
various number of bytes or bits to represent each range block which might require a more
complex decoder or the decoder used for one image may not be used for other images
which is impractical for current internet browsing applications. An OPT algorithm is
listed below.
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Algorithm OPT
1. Partition an image into nonoverlapping 8×8 range blocks.
2. Shrink the encoded image in half and collect all 8×8 blocks (maybe overlapped); these

blocks associated with their 8 isometric transforms [13] establish the domain pool.
3. For each range block, find an optimal (shrunken) domain block in the domain pool

with a minimum square error defined in Eq. 7. Record the location and the associated
isometry of the optimal domain block, the quantized contractivity coefficient s and the
quantized offset µ.

4. The encoded image is represented by a set of restricted local affine transformations
(4096 for our applications), each transformation is represented by the location and one
of the eight corresponding isometries of an optimal domain block, and quantized val-
ues of s and µ as (x, y, µ, k, s), where s is quantized using 5 bits by

s = (s < −1? 0 : s ≥ 2.10? 31: (int) (10.5 + s∗10)) (12)

The encoding process is computationally demanding by an exhaustive search of an
optimal domain block for any given range block. Although Lee and Lee [16], and Lee
and Ra [17] proposed using local variance to reduce the domain block search time for a
given range block, they encountered the same problem of estimating the contractivity
coefficients {si}. For various images, the range of the contractivity coefficients may be
large enough to weaken the decoding fidelity. Lee and Lee’s affine transforms set s≡1.
Lee and Ra assigns a few fixed values for the coefficients {si}. The next section proposes
a simple approach to fast search for a suboptimal domain block for a given range block.
Experiments are given in the following section.

4. ACCELERATING FRACTAL COMPRESSION ALGORITHMS

Initial experiments showed that the domain block and a range block with an optimal
match essentially have the same location of peak intensity changes [ ]. This evidence
can be briefly interpreted as follows.

From the equation (9), let εj = saj + µ − bj. Then
j

jj

a

b
s

∈+−
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µ
and εj≤

Error . If a domain block D is affine-similar to a range block R, then Error must be
very tiny, ideally 0. By assuming that εj<<bj − µ for each j, we have
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This indicates that the difference be-

tween neighboring pixel values for a range block must be proportional to the corre-
sponding part of an affine-similar domain block. Thus motivated, our algorithm searches
only the shrunken domain blocks whose maximum intensity change at a pixel is close to
the corresponding location of a given range block with maximum intensity change
(maximum gradient). The algorithm is listed below.
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Algorithm MG
1. Partition the domain pool into M chunks {C1, C2, …, CM}, e.g., M = 256.
2. Compute the maximum intensity change vi from chunk Ci.
3. For each range block Ri, find the maximum intensity change ui.
4. Find a domain-range block match, Dj, with |ui − vj| ≤ ∆, where vj is the maximum in-

tensity change of Dj, and ∆ is a small integer, ideally 0.
5. Among the matching candidates, find a domain block which has the closest square

distance, defined in Eq. 11, to the given range block.
The number of chunks, the ∆ value, and the quantization of coefficient s corre-

sponding to each range block will affect the performance of the Algorithm. We fix the
number of chunks to be M = 256 with the chunk size 16×16, ∆ is variable so that 256
candidates of domain blocks for each range block are all selected for a comparison to
find a suboptimal restricted local affine transformation. It must be mentioned that if we
set M = 249×249 with the chunk size 1×1, Algorithm MG essentially performs like OPT.
A comparison of the accelerating algorithm MG with OPT, and Lee [16] is given in the
next section.

5. EXPERIMENTAL RESULTS

We tested a restricted optimal encoding algorithm (Algorithm OPT) and the pro-
posed accelerating fractal compression Algorithm MG on four 512×512 images: Jet,
Lenna, Mandrill, and Peppers. Images Jet and Lenna are shown in Fig. 1. All the ex-
periments are done on a PC Celeron 333 running a Red Hat 5.2 Linux OS with 64M
SDRAM. We fix the compression ratio to be 16 (0.5 bpp) without counting the potential
reduction of lossless compression on quantized coefficients of affine transformations.
The peak signal-to-noise ratio (PSNR) values between an original image f and the de-
coded image f̂ associated with average encoding and decoding times are shown in Table
1.

(a) (b)

Fig. 1. Original 512×512 images: (a) Jet and (b) Lenna.
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Table 1. Performance of fractal coding algorithms on 512××××512 images.

PSNR values (in dB) CPU timeAlgorithm
Jet Lenna Mandrill Peppers Encoding Decoding

OPT 31.43 33.23 23.76 33.53 1300 min 1.3 sec
MG 29.20 31.27 22.58 31.64 1 min 1.3 sec

Lee [16] 26.47 29.46 21.76 29.05 2 min 1.3 sec

The corresponding decoded images for Algorithms OPT and MG are shown in Figs.
2-3, respectively. The experimental results show that fractal-based compression algo-
rithms has PSNR values larger than those by VQ [7, 19]. Our proposed algorithms drop 2
dB of PSNR values while preserving the quality of decoding images at a certain level
with a speed-up of over 1300 times of the nearly optimal algorithm OPT.

(a) (b)
Fig. 2. Decoded images of Jet by Algorithm (a) OPT and (b) MG.

We summarize our results that for an image containing a large of highly textured
blocks, for example Mandrill, the PSNR values of all algorithms are significantly lower
than those of images with a large portion of smooth regions such as Lenna and Peppers.
Image Jet contains a certain portion of sharp edges and textures, so its PSNR values are
between those of Mandrill and Peppers. The decoded images of Algorithms OPT and
MG are well recognized and are satisfactory for all of the images. Although the PSNR
values of OPT and MG algorithms for the image Mandrill are small, the decoded images
are well recognized.
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(a) (b)

6. CONCLUSIONS

The fixed point theorem for a contractive local iterated function system has pro-
vided a good framework for image compression [5, 12, 13]. Its most attractive feature is
the resolution-independent decoding property. However, the encoding is extremely time
consuming. This report proposes a simple accelerating fractal compression algorithm
using maximum gradient, the maximum intensity changes of neighboring pixels. Ex-
perimental results show that our algorithm is over 1300 times faster than a restricted op-
timal one which exhaustively searches many millions of domain blocks (4096×8×62001).
Although our PSNR values may drop 2 dB compared with those of a nearly optimal al-
gorithm, the proposed algorithm preserve visual quality at a certain level. Other features
between domain and range blocks with optimal matches merit further investigation for
more precise and faster encoding.

On the other hand, other accelerating fractal compression algorithms such as [6, 16,
17] may use different decoders for different fractal encoded images which may not be
practical for the internet browsing-intensive applications. Instead, we propose a nearly
real-time standard fractal decoder using 8×8 range blocks. Our decoder takes 1.3 seconds
to decode a 512×512 compressed fractal image.
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