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Abstract

Texture features derived from wavelet transforms have
recently been exploited for texture discrimination, im-
age retrieval from a database, region classification for
satellite images. Most works demonstrate that the er-
ror rate for texture classification is reduced as the num-
ber of texture features increases but seldom mentioned
how to select good features derived from a specified
wavelet transform. This report provides experiments
to show that a few wavelet features might perform well
if Whitney’s procedure is applied to select a suboptimal
set of features. We test Daubechies four wavelet tex-
tures on three sets of database including (1) textures
synthesized by Generalized Ising models (GIM), (2)
textures synthesized by Gauss Markov random fields
(GMRF), (3) natural textures scanned from Brodatz’s
Album. A comparison with the features derived from
Fourier transform, another filtering method, shows that
both approaches can achieve perfect results if an appro-
priate set of features are used.

1 Introduction

Texture analysis has been an active research area in
Computer Vision and Pattern Recognition since three
decade ago [12]. Among which, texture feature defini-
tion, selection, and extraction are the major researches
with applications on recognition and discrimination.
The commonly used texture features such as direction-
ality, coarseness, regularity, and etc. [18] could be de-
rived from Co-occurrence matrices [12], random field
models [3] [4] [9] [14], fractal models [17], filtering meth-
ods [2] [5] [7] [13] [15] [16]. Many researchers reported
a comparison for a variety of texture features [6] [8] [17]
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[19]. However, like the difficulty of precisely defining a
texture, a best set of textures has never existed. Peo-
ple encounter the problem of selecting a small number
of discriminant features from a large set of potential
features. The recent reports tend to emphasize the
importance of wavelet features but ignore the feature
selection problem. This paper reminds that Whitney’s
method [20] can guide to select a small set of discrimi-
nant features among a large set of potential features.

The remaining of this paper is organized as follows.
Section 2 reviews wavelet features from the Daubechies
four transform [10]. Section 3 reviews Fourier features
from the Fourier transform [19]. Section 4 shows the
experimental results on three data sets Section 5 gives
the conclusion.

2 Daubechies four Wavelet

Transform

This paper investigates the features derived from the
Daubechies four wavelet transform (Daub4) [10] which
can be briefly described as follows. Let X be an im-
age of size N × N and P and Q are row and column
permutation matrices corresponding to downsampling
processes as introduced in [10], respectively. Then, the
output Y of the 3-scale Daub4 can be depicted as fol-
lows.

Y ← P ∗4 W ∗3 X ∗1 W t ∗2 Q

where
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matrix W = Daub4 given below is orthogonal.
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The 3-scale wavelet transform partitions an image
into 10 blocks numbered from 1 to 10 with Block 1
containing the lowest-frequency coefficients and Block
10 containing the highest-frequency coefficients [6] [15].
The variance of wavelet coefficients located in each
block is then computed as a feature, thus ten wavelet
features are derived from 10 blocks. The features mea-
sure the coarseness and directionality of a texture [18]
at a certain level [6].

3 Fourier Transform

The discrete Fourier transform of an image {f(x, y)}
of size m × n can be defined as

F (u, v) =
1

mn

m−1∑
x=0

n−1∑
y=0

f(x, y)exp
[
−2jπ(

ux

m
+

vy

n
)
]

(1)

A wedge-shaped region is defined as

Ws,t = {(u, v) | s ≤ arctan(v/u) < t} (2)

A ring-shaped region is defined as

RL,U =
{
(u, v) | L2 ≤ u2 + v2 < U2

}
(3)

The first eight features based on wedge-shaped re-
gions are defined as the variances of Fourier power spec-
trum with region sections separated by [s, s + π/4),
where s ∈ {0, π/4, . . . , 7π/4}. Similarly, the other four
features are defined as the variances of Fourier power
spectrum of ring-shaped regions with [L,U) = [2,4),
[4,8), [8,16), [16,32), respectively. The features respond
the coarseness and directionality of a texture. The de-
tails are referred to [6] [19].

4 Experiments

Previous researchers [6] [15] [19]. naturally order the
features from the subbands with the lowest frequency
to the one with the highest frequency which usually

leads to an unexpected poor performance even all fea-
tures are used up. Instead, we evaluate texture features
by means of Whitney’s nonparametric procedure. The
idea is tested on three data sets described below.

4.1 Experiments on Data Set 1

This data set consists of 100 128 × 128 texture im-
ages of four categories, each category contains 25 tex-
ture patterns generated from Generilized Ising models
[4] [11] with four parameters. Four textures with one
texture from each category are displayed in Figure 1.

(a) (b)

(c) (d)

Figure 1: Textures Generated from GIM

4.2 Experiments on Data Set 2

This data set consists of 100 128×128 texture images
of four categories, each category contains 25 texture
patterns generated from Gauss Markov random field
models (GMRF) [3][11] with six parameters. Four tex-
tures with one texture from each category are displayed
in Figure 2.

4.3 Experiments on Data Set 3

This data set consists of 96 128×128 texture images
of six categories, each category contains 16 nonover-
lapped texture patterns D04, D06, D09, D16, D24, D77
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(a) (b)

(c) (d)

Figure 2: Textures Generated from GMRF

scanned from Brodatz’s book [1]. Six textures with one
texture from each category are displayed in Figure 3.

4.4 Performance

Our experiments show that for Data Set 1, wavelet
features #7 and #2 can perfectly discriminate the tex-
tures and Fourier features #3 and #10 can completely
discriminate the textures. For Data Set 2, wavelet fea-
tures #6 and #2 can perfectly discriminate the tex-
tures and Fourier features #1 and #3 can completely
discriminate the textures. For Date Set 3, the errors for
the ordered features according to Whitney’s procedure
are listed in Table 1. We conclude that two or three
features should be enough to discriminate both natu-
ral and artifical textures. Blindly using more wavelet
or Fourier features does not necessarily improve the re-
sults.

5 Discussion and Conclusion

This paper shows that textures can be discriminated
by computer if they are visually discriminated. Fil-
tering methods for deriving texture features such as
wavelet texture features are good approaches. A tra-
ditional pattern recognition strategy for finding an ef-
ficient set of texture features should be considered.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Textures Scanned from Brodatz’s Album
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