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Abstract

Filtering methods have recently raised increasing interests in texture analysis due to
their simulation of human vision. The goal of this paper is to evaluate the performance of
four filtering methods including Fourier transform, spatial filter, Gabor filter, and wavelet
transform for texture discrimination. Experimental results on both natural textures and
synthesized Markov random field (MRF) textures indicate that the wavelet features achieve
almost the same recognition rate with the Gabor features, which is higher than the other two

methods, whereas the computation time shows the wavelet features are preferred.
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1. Introduction

The purpose of texture discrimination is to find a best matched category for a given
texture among existing textures. Many previous works are proposed to solve this problem
(Haralick et al., 1973; Tamura et al., 1978; Chellappa et al., 1985). A comparison of
textural features from Fourier power spectrum, second-order gray level statistics, and first-
order statistics of gray level differences were shown in previous work (Weszka et al., 1976).
Other textural features including co-occurrence features, Gabor features, MRF based
features, and fractal features were compared in another work (Ohanian and Dubes, 1992).

Filtering methods for texture discrimination attempts to decompose image signals into
different projected spaces which correspond to human visual receptive fields. In this paper,
we make a comparison of four commonly used filtering methods including Fourier
transform, spatial filter, Gabor filter, and wavelet transform to demonstrate their
performance on discriminating natural textures (Brodatz, 1966) and synthesized MRF
textures (Dubes and Jain, 1989).

The Fourier transform for texture discrimination was tested in a comparison work
(Weszka et al., 1976), where the Fourier transform performs an energy concentration of the
input image and a significant textural feature is obtained from the variance of area selection
on the Fourier power spectrum. Based on the early visual research (Ginsburg, 1977),
Coggins and Jain (1985) proposed the spatial filter for texture discrimination. The Gabor
filter is famous of its simulation with human vision (Marcelja, 1980) and it was applied to
texture discrimination (Jain and Farrokhnia, 1991). The wavelet transform is a good scale
analysis tool (Daubechies, 1988; Mallat, 1989), where Laine and Fan (1993) applied the

wavelet transform to texture discrimination. The variance of each filtered image of the
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spatial filter, the Gabor filter, and the wavelet transform is used as a textural feature.

The remaining of this paper is organized as follows. Section 2 reviews the Fourier
transform for texture discrimination. Section 3 recalls the spatial filter for texture
discrimination. The Gabor filter for texture discrimination is described in Section 4. Section
5 describes the wavelet transform for texture discrimination. Experimental results on
discriminating natural textures and synthesized MRF textures are reported in Section 6.

Section 7 gives the conclusion.

2. Fourier Transform for Texture Discrimination

The discrete Fourier transform of an image {f{x,y)} is defined by

1 M-IN-1 T
Faw= 0 3 3 fry)e e (1)
x=0 y=0

where M and N are the ranges in two axes and the Fourier power spectrum is |F|*=FF"
(where * denotes the complex conjugate).

There are two kinds of textural features based on the Fourier transform. One is the
ring-shaped selection that fetches the ring-shaped region centered at the origin with certain

radii. Function (2) defines the set of ring-shaped region as follows.

R, . ={u,v)‘r12Su2+v2<r22,0Su,vSN—l} 2)
for all values between the inner ring radius », and outer ring radius r,. Weszka et al. (1976)
used the four ring sets: [2.4), [4.8), [8,16), [16,32) to extract textural features. The other is
the wedge-shaped selection that fetches the wedge-shaped region of the form

Wel,ez = ku,v)@1 < tan‘l(%) <0,0<u,vy<N- 1} (3)

The adopted wedges are 45° wide from 0° to 360°. Consequently, 8 textural feature sets

are acquired from wedge-shaped selection. The feature selection method on the Fourier
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transform contains 4 ring-shaped and 8 wedge-shaped selected regions. The variance of

Fourier power spectrum defined on g, , or Woy.0, is used as a textural feature. Thus,

there are up to twelve textural features obtained for texture discrimination.

The feature selection sequence on each filtering method is based on two important
texture primitives: coarseness and directionality. The feature sequence is selected from
coarsest images to finest images and the directional features are obtained according to the
filtering method property.

Thus the first four Fourier features are the coefficients obtained from the ring-shaped
selection with the order [2,4), [4.8), [8,16), [16,32), which decides the coarseness of an
image. The next eight Fourier features decide the directional characteristics that are

obtained from the wedge-shaped selection of 0’ to 360° with 45° wide.

3. Spatial Filter for Texture Discrimination

Based on the early visual research (Ginsburg, 1977), Coggins and Jain (1985)
proposed the spatial filter for textural feature extraction. They designed two kinds of spatial
filters for simulating visual system which are described as follows.

The spatial frequency filter F,(u,v), -N+1<u,v < N, of a 2Nx2N image is defined as
follows:

Image[F,(u,v)]=0 forallu, v &

Real[F,(0,0)]=1 for all &,

_(n(Vu? 492 )-In(ug )?
Real[F,(u,v)]= 202 for (u,v)#(0,0).

where 6=0.275 and u,=2"". For a 2Nx2N image, the spatial frequency filters are selected

for k=1,...,(1+log,N).



The orientation channel filter G,(u,v), -N+I1<u,v <N, of a 2Nx2N image is defined as

follows:

Image[G,(u,v)]=0 forall u, v, £
Real[G,(0, 0)]=% for all £,

2
A

Real[G,(u,v)]= ¢ 20> for (uv)#(0,0).
where 4, = min [ |y, - tan” (v/u)| ,|(W,-180) - tan™' (v/u)| ], 6=17.8533, and four pairs of (, 11,):
(0, 0), (1, 45), (2, 90), (3, 135). Two examples of these filters are given in Figure 1. Each
textural freature is the variance of each filtered image. For a 128x/28 image, we have 8
spatial frequency filters and four orientation channel filters. Thus, 12 textual features are

obtained.
<< Figure 1. (a) the spatial frequency filter (k&=7), (b) the orientation channel filter (k, ) = (0,0).>>

The first eight spatial features are obtained from the spatial frequency filters to
measure the coarseness, which are obtained from the coarsest filter (k=0) to the finest filter
(k=7). The remaining four features are obtained from the orientation channel filters to
measure the directionality, which are acquired from the four directional features with the

sequence of (0,0), (1,45), (2,90), and (3,135).

4. Gabor Filter for Texture Discrimination

A 2-d symmetrical Gabor filter can be defined as in (4) whose corresponding Fourier

transform is computed and given in (5) (Jain and Farrokhnia, 1991).
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An example of a 2-d Gabor filter is illustrated in Figure 2. The size of the filter is

64x64 with the center shifted to the position (32,32).

<< Figure 2. A 2-d Gabor filter in (a) spatial domain, (b) frequency domain with the

parameters o, = 0,= 10.0, 1, = 0.05, and 6 =0'.>>

A paradigm of using traditional Gabor filter for textural feature extraction is
characterized as shown in Figure 3. The bank of the Gabor filters has the form of either (4)
or (5) by setting o,, 0,, 6, and u, to certain values. Then, we obtain the textural feature as
the variance of each Gabor filtered image. The same o,, 0, U, with four different 6s (0°, 45,
90", 135") are needed to define a set of Gabor filters. That’s because all directions are
required for overall cases and these four directions (0°, 45°, 90°, 135%) are used to cover
general cases (Jain and Farrokhnia, 1991). The 12 textural features are acquired from the
Gabor filter by using (W,, 6) = (0.3536, 1.9099), (0.1768, 3.8197), and (0.0884, 7.6294),

where 6,=6,=c with four directions (0’, 45°, 90", 135") for function (4).
<< Figure 3. A paradigm of using traditional Gabor filter for textural feature extraction.>>

The first four Gabor features are acquired from the first set of parameters (,=0.0884,

0=7.6294) with four directions (from (' to 135"), where they are obtained from the coarsest
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filtered result. Features acquired from the third set of parameters (1 ,=0.3536, 6=1.9099) are
the last four features, which are the finest filtered results. Each feature characterizes the

coarseness or fineness along one of the four directions.

5. Wavelet Transform for Texture Discrimination

The wavelet decomposition is to represent a signal f as a linear combination of a
family of orthonormal basis y,,, that are derived from the dilation and translation of a
mother wavelet y (Daubechies, 1988; Strang, 1989)

fx)= Y.Co W, (x) VxeR (6)

m,nez

with y,,,(x) = 2"?y(2"x-n). The wavelet coefficients C

mn

are computed by the inner

product
Cop =< [ W >= [ S (X)W (x)dx 7)

A two-scale difference equation ¢ (Strang, 1989) as a scaling function should be

defined first before we obtain the mother wavelet .

0(x)=D h(m)9. ,(x) (8)

where h(n) = <¢, ¢,,>, ¢

mn

(x) = 2"¢(2""x-n), and LY H)|2 _ 1 for the orthonormal

basis {¢,,} (Daubechies, 1988). Then, the mother wavelet y is obtained from the scaling

function ¢ by

w(x)=Y g(n)¢, ,(x) (9)

where g(n)=(-1)" h(1-n) and h(n) is as defined in equation (8).
A 2-D wavelet transform can be treated as two separated 1-D wavelet transform. The

coefficients obtained by applying a 2-D wavelet transform on an image are called the



subimages of a wavelet transform. After applying a wavelet transform on an image, many
subimages are obtained and we put these subimages in one as shown in Figure 4. The
selection of wavelet basis is DAUB4 (Daubechies, 1988). The variance of each wavelet
subimage is used as a textural feature. Ten subimages are obtained in wavelet

decomposition as Figure 4 demonstrates.

<< Figure 4. Illustration of wavelet decomposition up to level 3,

where C,; means the jth subimage at level i. >>

The variances from the third level: C;,, C;, C;

3,3

and C;, are the first four wavelet
features, which are obtained from the coarsest filtered results. The variances from the
second level: C,,, C,; and C,, are the second three features. The last three features are the
variances from the first level: C, ,, C, ;, and C, ,, which are acquired from the finest filtered

results.

6. Experimental Results

6.1. Performance Evaluation for Natural Textures

Figure 5 shows the six test textures with size 512x512. One hundred 128x128
overlapped subimages are retrieved from each texture. Thus, there are 600 subimages in
total as input data. Feature sets of applying four filtering methods on these input data are
obtained for measuring the performance of each method. Each textural feature is quantized
in a range for avoiding one feature dominating others. Experimental results are given in

section 6.2, where the performance is measured by 1-nn classifier with leave-one-out error

(Devijver, 1982).



<< Figure 5. Six textures from Brodatz book (1966), >>

Table 1 indicates the experimental results of applying four filtering methods for
texture discrimination and the CPU time for each method running on a Sun SPARC 20 is
shown in Table 2. Table 1 shows that when the first 4 features are used for each method,
Fourier transform, spatial filtering, Gabor filtering, and wavelet transform achieve
recognition rate, 0.900, 0.9617, 0.9883, and 0.9483, respectively. This result indicates that
the coarsest Gabor features have better recognition rate than the third-level wavelet features,
four coarse spatial features, and four coarse Fourier features.

When the number of textural features is larger than 7, both the wavelet features and
the spatial features achieve recognition rates as good as the Gabor features do, whereas the
wavelet features requires the least CPU time. The trade-off between CPU time and
recognition rate suggests that the wavelet features be used for discriminating natural

textures.

<< Table 1. A comparison of features derived from filtering methods for natural textures. >>

<< Table 2. CPU time for computing all textural features. >>

6.2. Performance Evaluation for Synthesized MRF Textures

Four categories of each one containing twenty-five 128x128 synthesized MRF
textures (Dubes and Jain, 1989) are used for a test. Thus, there are 100 synthesized MRF

textures belonging to four categories. Four textures using quite separate MRF parameters



(Dubes and Jain, 1989) corresponding to each category are shown in Figure 6. The purpose
is to see if the filtering features perform perfectly on these homogeneous synthesized

textures.

<< Figure 6. Four synthesized MRF textures. >>

Table 3 indicates that when the first two features used for each method, we have
recognition rate 0.82, 0.93, 0.94, 0.99 for Fourier transform, spatial filtering, Gabor
filtering, and wavelet transform, respectively. However, when more than 4 features are used,
all of the four methods achieve a nearly perfect recognition. Though the textures
synthesized from an MRF model with separate sets of parameters are visually similar, these
four methods perform perfectly when four or more features are used. The computation time
shows that the Fourier features and the wavelet features are more efficient than the other

two, for MRF synthesized homogeneous textures.

<< Table 3. A comparison of features derived from filtering methods for synthesized MRF textures. >>

7. Conclusion

This work compares four filtering methods: the Fourier transform, the spatial filter, the
Gabor filter, and the wavelet transform on discriminating natural textures and synthesized
MREF textures. Several conclusions are drawn based on our experimental results by the pre-
defined feature sequence, which is based on the filtering property and texture

characteristics. First, when few number of features are restricted, for example 4, the Gabor
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features are preferred. Second, when all 3-level wavelet features are used, and the
corresponding 12 features for the other three filtering methods are used, the recognition is
nearly perfect, but wavelet transform is computationally more efficient than other methods.
So is suggested. Third, for synthesized homogeneous textures, any filtering method

performs well even with a few number of predefined sequence of features.
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