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Abstract--A new hybrid method is presented that combines the scale space filter (SSF) and Markov random 
field (MRF) for color image segmentation. The fundamental idea of the SSF is to use the convolution of 
Gaussian functions and image-histogram to generate a scale space image and then find the proper interval 
bounded by the local extrema of the derivatives. The Gaussian function is with zero mean and varied 
standard deviation. Using the SSF the different scaled histogram is separated into intervals corresponding 
to peaks and valleys. The MRF makes use of the property that each pixel in an image has some relationship 
with other pixels. The basic construction of an MRF is a joint probability given the original data. The 
original data is the image that is obtained from the source and the result is called the label image. Because 
the MRF needs a number of segments before it converges to the global minimum, the SSF is exploited to do 
coarse segmentation (CS) and then MRF is used to do fine segmentation (FS) of the images. Basically, the 
former is histogram-based segmentation, whereas the latter is neighborhood-based segmentation. Finally, 
experimental results obtained from using SSF alone, MRF using iterated conditional mode (ICM), and 
MRF using Gibbs sampling are compared. 

Color image segmentation Markov random field (MRF) Scale space filter (SSF) 
Gibbs distribution Iterated conditional modes (ICM) Gibbs sampling (simulated annealing) 

1. INTRODUCTION 

Segmentation is a process of grouping image pixels 
into units that are homogeneous with respect to one or 
more characteristics. It is an important  task in image 
analysis. However, many researchers have focused 
their attention on the monochrome image segmen- 
tation whose goal is the initial separation of the 
individual objects in the perception of the scene. A 
common problem in segmentation of a monochrome 
image occurs when an image has a background of 
varying gray level such as gradually changing shades, 
or when collecticns we would like to call regions or 
classes assume some broad range of gray scales. This 
problem is inherent since intensity is the only available 
information from monochrome images. 

It has long been recognized that the human eye can 
detect only in the neighborhood of one or two dozen 
intensity levels at any one point in a complex image 
due to brightness adaptation, but can discern thousands 
of color shades and intensities. Color is a perceptual 
phenomenon related to human response to different 
wavelengths in the visible electromagnetic spectrum. 
Three psychological attributes, namely hue, saturation, 
and intensity, are generally used to represent color. 
Compared to a monochrome image, a color image 
provides, besides intensity, additional information in 
the image. In fact, human beings intuitively feel that 
color is an important part of their visual experience, 
and color is useful or even necessary for powerful 

processing in computer  vision. Researchers have 
attempted to utilize this additional information. Thus 
applications with a color image are becoming increas- 
ingly prevalent nowadays. 

From the image segmentation point of view, color 
image segmentation is basically a three-dimensional 
(3D) image histogram clustering technique 1~'21 which is 
a computational expensive process. Instead of using a 
multidimensional histogram thresholding technique 
to segment the color image, our solution to this 
problem is to project the feature space onto its lower 
dimensional subspace (one-dimensional (1 D) histogram). 
The clustering operation on the 1D histogram is 
basically a monochrome image segmentation, how- 
ever, the clusters generated in each dimension have to 
be merged to form 3D clusters. The segmentation 
process will generate many more regions for the color 
images than for monochrome images because of the 
abundant information in the color images. However, 
using only the feature clustering may generate some 
random noise and very small regions which do not 
indicate the natural color regions. In this paper, we 
introduce a method to remove these pseudo regions. 

Here, we use the scale space filter (SSF) to separate 
the histogram into some intervals that are bounded by 
the local extrema of its derivative and this operation is 
called the coarse segmentation (CS). Scale space filter 
can separate some pixels which are in the area closing 
the positions of peaks and those pixels which are close 
to the zones of valleys. Then, after the scale space 
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filtering, Markov random field (MRF) operates on 
pixels and this operation is called the fine segmen- 
tation (FS). The coarse-to-fine step will find the segment 
number by itself. The CS is basically a histogram- 
based segmentation, it does not consider the spatial 
correlation among pixeis. The FS is a neighborhood- 
based segmentation. Markov random field uses the a 
priori knowledge of neighboring pixels for segmentation. 

The idea of filtering across a continuum of scale 
using Gaussian filters has been explored for the purpose 
of constructing symbolic descriptions of signals t3) and 
shapesJ *1 Stansfield ~5) motivated by using multiple 
Gaussian filters for edge detection t6) observed that the 
zero-crossing locations of 1D signals traced out con- 
tours in a two-dimensional (2D) space called scale 
space. Witkin TM developed a multi-scale representation 
based on ternary trees and described a methodology 
for extracting the perceptually salient features of the 
signal. Babaud et al. ~7~ proved that the Gaussian is the 
only linear filter which has the desired property of not 
creating zero crossings as the scale decreases. 

Multi-scale descriptions in terms of the location of 
zero crossings of the second derivatives of the signal in 
scale space have become known as fingerprints. By 
using fingerprints, events can be detected at coarse 
scales and localized by tracking zero-crossing contours 
in scale space down to fine scale. In this paper, because 
we are interested in extracting peaks and valleys in a 
1D waveform of the histogram, zero crossings in the 
second derivative can be detected at a scale where only 
the more significant variations in the waveform remain. 
The detected zero crossings can then be tracked down 
to a lower scale where the precise location of the peak 
or valley can be determined. ~s) 

Then, we use MRF to segment the color image. 
Recently researchers have investigated the applications 
of MRF. Markov random field was originally used by 
Ising t9) who tried to model the structure of a crystal. 
Besag "°1 proposed the formulation of conditional 
probability models for finite systems of spatially inter- 
acting random variables and applied the Hammersley- 
Clifford theorem to establish the relation between MRF 
and the Gibbs distribution. Geman and Geman "~) 
adopted a Bayesian approach and a restoration al- 
gorithm for computing the maximum a posterior 
(MAP) to estimate the original image given the degraded 
image. Subrahmonia etal. "2~ used a similar method 
for 3D primitive model recognition, parameter esti- 
mation, and segmentation from a sequence of images 
taken by one or more calibrated cameras. 

Markov random field models can generally be used 
for the reconstruction of a function starting from a set 
of noisy sparse data, such as intensity, stereo, or 
motion data. The essence of the MRF model is that the 
probability distribution of the configuration of the 
fields, given a set of data, is a Gibbs distribution. The 
model is then specified by an "energy function", that 
can be modeled to embody a priori information about 
the system. The basic idea of MRF is that each pixel 
must have some relations with its neighboring pixels. 

Therefore, we wish to establish the model that can 
extract "information" from neighboring pixels to get 
better results. 

2. COARSE SEGMENTATION USING SCALE 
~PACE FILTER (SSF) 

In this section we develop an SSF which can detect 
the positions of intervals containing only peaks or 
valleys at different scales for histogram analysis. The 
positions of peaks and valleys and their derivatives 
(and intervals bounded by extreme) usually indicate 
the existence of a smooth area and the edges. If we can 
exploit the information embedded in the histogram 
more effectively, we can analyze the image more 
accurately. The question is how to extract the meaning- 
ful peaks and valleys from it. Because the curves of 
most histograms are not smooth and they contain 
many rugged peaks, the computer cannot analyze the 
curve effectively. Witkin 113) proposed an approach 
that uses the Gaussian function to smooth the curve 
and then detects the area of peaks and valleys. We find 
this method is very effective for image segmentation. 

This method uses different scale Gaussian functions 
to smooth the specific histogram and generates, a 
so-called, scale space image of which one coordinate 
is gray level and the other is the scale. When the scale 
value is large, the curve is smoother than smaller ones. 
When scale increases, the small peaks of the histogram 
will disappear and finally the curve becomes a hori- 
zontal line. In Fig. 1, we find the original peaks and 
valleys are smoother as scale value increases. What is 
the last scale to partition the histogram to obtain 
proper segments? The answer is that no one is proper 
for all the range of the histogram. In each smaller range 
of the histogram, there is a better scale value which can 
divide the histogram to better result. In other words, 
each interval bounded by a local extreme of deviation 
of the histogram might be generated according to 
different scale value. Let the histogram be interpreted 
by f(x) where x is the value of the gray level and F(x, a) 
the scale space image function" 3) 

F(x, a) = f(x)* g(x, a) 

=ffoof(u)~(~(2~))exp[ (x-u'2-]" 2 7  Jou (1) 

where " ,"  denotes convolution with respect to x. It is 
obvious that the scale space image is the result of 
convolution of the histogram and Gaussian function. 
The standard deviation of a is the scale. F defines a 
surface in the (x, a) plane, the surface swept out as the 
Gaussian's standard deviation is smoothly varied. We 
call the (x,a) plane, scale space, and the surface F 
defined in equation (1), the scale space image of f. 
Figure 1 demonstrates the sequence of Gaussian 
smoothing at increasing a (=2,  5, 10, and 22), which 
are constant-tr profiles from the scale space image. 
Figure 2 portrays the scale space image as a surface in 
perspective. 
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Fig. 1. Histograms after convolution with four different scales (a = 2, 5, 10, 22). 
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Fig. 2. Scale space image. 

Fingerprint 

Gray level 

Fig. 3. Fingerprint. 

Although, conceptually, we are interested in the 
extremes, working with the zero crossings is more 
convenient. Evaluating the partial at any fixed ~, the 
zero crossings in OF/Ox are local minima and maxima 
in the smoothed signal at that ~, and those in 02F/t;3x2 
are extremes of slope. The second deviation of the scale 
space image with respect to x is shown in Fig. 3. The 
horizontal axis is gray value and the vertical axis is the 
scale value. The curve lines are the positions of the zero 
crossing of the second deviation with respect to x. 
Figure 3 shows that the fixed-scale zeroes in fact lie on 
zero-crossin 9 contours through scale space. The two 
arms of each arch form a complementary pair, crossing 
zero with opposite sense. As we sweep across the apex 
of an arch, with a increasing, the pair approach each 
other with increasing velocity, then collide and are 
annihilated. 

2.1, Algorithm 

Firstly, we modify equation (1) to a discrete type. 
Secondly, we take the second deviation and find the 
positions of zero crossing. Thirdly, we find the positions 
of zero crossing, search the pairs of positions that have 
the same scale with a specific apex, and establish the 
connections between each pair. The position of zero 
crossing is called mark. Each mark has a record that 
contains the positions of itself and the apex. We use 
the position of the apex to distinguish the marks. After 
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Fig. 4. Node generation. 

we found all the marks and established the relation 
between zero crossings, the initial image of second- 
order deviation can be thought of as the set of points 
and there are some wires connecting them. Each point 
has only one wire connected to it and the points 
connected with the same wire belong to the same apex, 
just like the fingerprint. 

Given the fingerprint, the next step is to construct 
the initial node tree. Because node is rectangular, 
we use a four-tuple, (Nodep ur,, Nodep down'  Node  left' 
Nodep.ri=ht), to represent t[ae boundaries of nod~e p, 
where Nodep.up and Noder,,aow" correspond to the scale 
value and Nodev,left and Nodep,ri,,ht correspond to the 
gray level. The width of node p (= Nodep,~i~t- Noder,,la, ) 
is the peak interval corresponding to the specific scale. 
The value of Nodep.up is just the scale value of the apex. 
Each time the apex is detected, a new node is generated 
and its scale value is memorized for future use. The 
Nodep.aow. is the scale value where the first child apex 
~s found. So, the discovery of a new apex means that 
some new children nodes will be generated for the 
current parent node. The Nodep,l= n and Noder,.righ, are 
the crossing positions of the horizontal line touching 
the first child-apex and the two arms of the parent 
apex, shown in Fig. 4. In Fig. 4, nodei and node k are 
also the children nodes of parent nodep but not the 
apex node. From this figure we can understand that if 
the contour has a sub-contour, the parent at least has 
three children, one is an apex child and the other two 
are not. 

After the nodes have been established, we select the 

active nodes to partition the histogram. We use the 
suggestion from Witkin (13~ to choose the most stable 
nodes which have the longest distance between Nodep.up 
and Node than the mean distance of its children. p,down 
However, to implement the algorithms for finding the 
active nodes from the second-order deviation of the 
scale space image, we face three unexpected problems: 
out of range problem, overlapping-discontinuous problem, 
and node-selection problem. 

(1) Out-of-range problem. The pair of zeroes of the 
fingerprint never vanish when we move to a finer scale, 
however, they can be out of the range of the histogram 
gray scale. Therefore, the number of zeroes may de- 
crease. There are two reasons for this phenomenon. 
Firstly, the scale space image is a continuous function 
resulting from the convolution operation of the histo- 
gram and Gaussian function. Because the Gaussian 
function expands over ( -  oo, oo), the results also have 
an infinite expansion. Secondly, after the second-order 
deviation, the position of zero crossing may change 
with respect to different scales. Especially when the 
histogram has some sharp peaks, the zero crossings of 
the second deviation of scale space image will slide 
when the value of scale (tr) changes. In Fig. 1, we can 
easily find the phenomenon. Its left-hand side has a 
very sharp peak. After convoiving with the Gaussian 
function, the histogram may have the width of the 
peaks extended, and the positions of zero crossing 
(which is also the reflection point) changed. 

(2) Overlapping-discontinuous problem. Because the 
scale values are different in each interval and the 
positions of zero crossings may slide, intervals may be 
overlapped or disconnected, as in Fig. 5. The histogram 
cannot be segmented properly. We have to resize the 
length and relocate the position. We separate the 
overlapping interval to two segments and combine 
them to the two neighboring nodes. The segmentation 
is based on the different properties (children number) 
of two neighboring nodes which is mentioned in the 
following equation: 

child-num,oaei 
D = (Nodej I - Node i r)* 

child-num.oa~i + child-num.oa~ j 

Nodelr=D+Nodeir ,  Node i l=Node  ir; i < j  (2) 

(a) 
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Fig. 5. (a) Overlapped interval. (b) Disconnected interval. 
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Fig. 6. (a) Interval tree of nodes. (b) Active nodes. 

where i < j  means that node i is on the left-hand side 
ofnodej and Nodei r means the right boundary of node 
i the same as Nodej 1. We use node instead of interval 
because we adjust the width of the node which is also 
the length of the interval. It is obvious that the interval 
length to be partitioned depends on the number of 
children nodes under parent nodes. We allow the node 
which has more children to get a larger part. After 
resizing, the intervals are all connected (see Fig. 6(a)). 

(3) Node-selection problem. How to choose the 
active nodes (see Fig. 6(b)) is very important in the scale 
space method. According to Witkin's ~3) suggestion, 
the active nodes are the nodes which can make the 
interval tree achieve the most stable state. We choose 
the node which has the longest distance between 
up-scale and down-scale of the node as the active node. 
In most cases, it generates good results. 

3. FINE SEGMENTATION USING MARKOV 
RANDOM FIELD (MRF) 

In this section, we present the basic definitions of 
MRF, and the formulation of a particular Gibbs 
distribution (GD) that is used in our image models. 
For the scene modeled by an MRF, a stochastic 
relaxation procedure for approaching the scene of 
maximum probability has been suggested by Geman 
and Geman. t11~ Markov random fields possess several 
characteristics that make them useful in image seg- 
mentation. Properties such as smoothness and con- 
tinuity of color regions over an entire image can 
be enforced using only dependencies among local 
neighbors. Discontinuities which separate regions of 
constant color may be computed, and then smooth 
regions can be found. In addition, the inclusion of both 
the prior and posterior distributions (through Bayes' 
rule) establishes a relationship between the noisy 
observed image and the color segmentation results. 

Details of MRF theory can be found in references 
(11, 14). Briefly, an MRF is a lattice of sites; for 
example, an image of pixels. Since MRFs are stochastic 
processes, the pixels in an image may take on any of 
their allowed values, which mean that all images can 
be generated. In addition, the conditional probability 
of a particular pixel having a certain value is only a 

function of the neighboring pixels, not of the entire 
image. The Hammersley-Clifford theorem <1°~ estab- 
lishes the equivalence between the conditional prob- 
abilities of the local characteristics in the MRF and 
local energy potentials in a GD. Therefore, the a priori 
probability that the MRF in a particular state can be 
calculated by summing the local energies over the 
entire image. We are interested in obtaining the MRF 
state that maximizes the a posteriori probability of the 
final segmentation given the observed data. From 
additional theorems, <t ~J the a priori energies can be 
added to an a posteriori energy term involving the 
difference between the actual observed data and the 
current MRF state (or predicted image). 

We focus our attention on discrete 2D random fields 
defined over a finite N1 ,N  2 rectangular lattice of 
points (corresponding to pixels in a digital image) 
which is defined as 

L={(i , j ) : I<_i<_NI,  I<_j<_N2}. (3) 

We start out by defining a neighborhood system on 
this rectangular lattice L. 

Definition 1. A collection of subsets of L described 
as  

rl = {rhj:(i, j)~L, rli j ~ L} (4) 

is a "neighborhood system" on L if and only if r/i#, the 
"neighborhood" of pixel (i,j) is such that: (I) (i,j)¢~/u, 
and (2) if(k,/)erhj then (i,j)erhl for any (i,j)eL. We can 
now define an MRF with respect to the neighborhood 
system r/defined over the lattice L. 

Definition 2. Let r/be a neighborhood system defined 
over lattice L. A random field X = {Xi~} defined over 
lattice L is an MRF with respect to the neighborhood 
system ~/if and only if 

P[XIj = xi j lXu = Xkl,(k, l)~L,(k, l) v~ (i, j)] 

= p[Xq = xijl Xkl = xu, (k, l)e~hj] (5) 

for all (i,j)eL, and P(X = x) > 0 for all x. 

We note that capital letters denote random variables 
and random fields, and lower case letters denote 
specific realizations. A hierarchically ordered sequence 



1222 C.-L. HUANG et al. 

5 4 3 4 5 

4 2 1 2 4 

3 1 i,j 1 3 

4 2 1 2 4 

5 4 3 4 5 

Fig. 7. Hierarchically arranged neighborhood systems r/m. 

of neighborhood systems that are commonly used in 
image modeling is r/1, r/2, r/3 . . . . .  r/1 = {r/~j} is such that 
for each (i, j) eL (except for pixels in the boundaries) r/~ 
consists of the four pixels neighboring pixel (i,j). 
r/2 = {~/2} is such that r//2 i consists of the eight pixels 
neighboring (i,j). The neighborhood structure for r/1 
and r/2, as well as for ~/3, ~/, and t/5 are shown in Fig. 7. 
The neighborhood system r/m is called the mth order 
neighborhood system. 

Due to the finite lattice used, the neighborhoods of 
pixels on the boundaries are necessarily smaller unless 
a toroidal (periodic) lattice structure is assumed. It also 
should be pointed out that the neighborhood systems 
that can be defined over L are not limited to the 
hierarchically ordered sequence of neighborhood 
systems described above, nor do they have to be 
isotropic or homogeneous. Therefore, MRF is charac- 
terized by the conditional distributions called the 
"local characteristics" of the random field. There are 
inherent difficulties with this definition of MRF in 
terms of the local characteristics. Specifically, these 
difficulties are the consistency problems concerning 
the joint distribution and the unavailability of the joint 
distribution. These difficulties are alleviated by 
characterizing MRF through GD. 

3.1. Gibbs random field (GRF) 

To define a GRF, firstly, it is necessary to define the 
"cliques" associated with a lattice-neighborhood system 
pair (L, r/). 

Definition 3. A clique of the pair (L, r/), denoted by c, 
is a subset of L such that : (1) c consists of a single pixel, 
or (2) for (i,j)#(k,l),(i,j)~c and (i,j)~c implies that 
(i, j) Er/kl. The collection of all cliques of(L, r/) is denoted 
by C = C(L, rl). 

The types of all cliques associated with ~/1 and r/2 are 
shown in Fig. 8. Now, GD can be defined as follows. 

Definition 4. Let t/be a neighborhood system defined 
over the finite lattice L. A random field X = {Xo} 
defined on L has Gibbs distribution (GD) or equiv- 
alently is a Gibbs random field (GRF) with respect 
to t/if and only if its joint distribution is of the form 

P(X = x) = 1 e-  e~xj (6) 
Z 

where 

U(x) = ~ Vc(x) is the energy function at X = x, 
c~c (7) 

Vc(x) is the potential associated with clique c 

and 

Z = ~ e-  u~x~ is the partition function. (8) 
x 

The partition function Z is simply a normalizing 
constant, so that the sum of the probability of all 
realizations x, add to unity. The only condition on the 
otherwise totally arbitrary "clique" potential Vc(x) is 
that it depends only on the pixel values in clique c. 
Therefore, the GD energy function consists of two 
parts, one describing the interaction potential between 
neighbors, and the other associated with the difference 
between the predicted image and the actual observed 
data. Several methods of minimizing the energy 
function over the image (i.e. maximizing the probability) 
can be used, among them simulated annealing, deter- 
ministic procedures, and network solutions. 

The origins of GD lie in the physics and statistical 
mechanics literature. Ising tg~ used a special GD, now 
known as the "Ising model", to describe the magnetic 
properties of ferromagnetic materials. The source of the 
revived interest in GD is known as the Hammersley- 
Clifford theorem. This result proven in the 1970s 
independently by several researchers, t 1 o.1 s~ establishes 
a one to one correspondence between MRFs and 
GRFs. Unlike the MRF characterization, the GD 
characterization provides the joint distribution of the 
random field, is free from consistency problems, and 
provides a more workable spatial model. For the 
sake of completeness, we present a version of the 
Hammersley-Clifford theorem, "6~ which establishes 
the equivalence of the MRF and GRF. 

Theorem 1. Let r/ be a neighborhood system on a 
finite lattice L. A random field X is an MRF with 
respect to r/if and only if its joint distribution is a GD 
with cliques associated with r/. 

01m 021q b3d 2 

r3:t  
Fig. 8. Clique type. 
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It should be pointed out that any random field can 
be viewed as an MRF or a G R F  with respect to a large 
enough neighborhood system, e.g. rh~ = L for all (i,j)e 
L. But our extensive experiments with these random 
fields indicate that M R F  (or GRF) models even with 
the smallest neighborhood systems, e,g. r/~ and r/2, are 
very flexible and powerful. Furthermore, the positive 
condition in the definition of M R F  does not pose a 
significant restriction. In the following, we present the 
general theory of MRFs on graphs, focusing on the 
aspects and examples that figure in image segmentation. 
Although the M R F  initially is used in texture image, 
it also can be used in other images after some modifi- 
cation. 

3.2. Sampling discrete random fields 

Sampling is the process of generating a realization 
of a random field, given a model whose parameters 
have been specified oF estimated. The intractability of 
the partit ion function Z in the denominator  of the 
Gibbs density function implies that the standard 
statistical procedures for sampling random variables 
such as rejection-acceptance and conditional prob- 
ability decomposition cannot  be brought to bear on 
the problem of sampling a G R F  or MRF. Instead, we 
must rely on relaxation-type algorithms. 

The following algorithm 114~ samples a G R F  and 
eliminates the need for computing the partit ion func- 
tion. It simulates a Markov chain whose states are G M 
possible colorings of the image and is similar to 
simulated annealing. I101 

Algorithm I .for sampling a GRF 

(1) Initialize the N × N lattice by assigning a color 
randomly from A -= {0, 1 . . . .  , G - 1 } to each site. Call 
this initial coloring x. 

(2) For each site s from 1 to M = N2: 
(a) choose g~A at random and let Ys = g. Let 
Yt = xt for all t ~- s; 
(b) let p = min{l ,  P(X = y)/p(X = x)}; 
(c) replace x by y with probability p. 

(31 Repeat (2) Niter times. 

The ratio o f  likelihood in step 2(b) can be computed 
in practice because the ratio does not depend on the 
partition function Z, and only those cliques involving 
site s need to be included. Convergence of the algorithm 
is assured if Niter is large enough (Niter ~ 50). 

A second sampling algorithm called the Gibbs 
sampler t11~ is also a raster-scan algorithm. 

Algorithm 2 ]or sampling a GRF 
l l) Initialize the N x N lattice by assigning a color 

randomly from A = {0, I , . . . , G -  1} to each site. Call 
this initial coloring x. 

(2) For  each site s from 1 to M = N2: 
(a) compute probabilities {pg} for g = 0, 1 . . . . .  
G - I where pg = P(X s = glXe~ = x,~) and x0~ is 
the current set of colors in the neighborhood of 
site s: 

(b) set the color ofsite s to g with probability pg. 
(3) Repeat (2) Nite, times. 

Algorithm 2 requires that G exponential functions 
be computed in step (2). Thus Algorithm 2 will take 
more time than Algorithm 1 and is subject to under- 
flow. Both algorithms use a randomly chosen initial 
state, although theory says that the algorithm will 
converge for any initial state. 

3.3. Pixel labelihg 

Decision making problems encountered in image 
segmentation require that labels be assigned to pixels 
in an image based on a degraded version of the true 
image. In this section, we mention the labeling problem 
with emphasis on the role of random field models. In 
the next section, we will mention the relaxation algor- 
ithms for segmentation that use M R F  models. 

An image labeling problem is specified in terms of a 
set of objects and a set of object labels L = {11,  l 2 . . . . .  IG}. 
The objects can be individual pixels, edge elements, or 
segments. For  simplicity, we take the objects to be the 
M pixels. In image segmentation, the labels denote the 
pattern classes in the image. For instance, if the image 
contains an object placed in the background, G = 2 
labels could be used, one for object and the other for 
the background. The object itself might contain several 
gray values. The true pixel labeling is denoted by 
x* = {x l, x2, xM}- The objective of all segmentation 
algorithms discussed here is to estimate x*. 

The set of observable random variables is denoted 
by Y = { Y1, Y2 . . . . .  YM}, where Yt is the feature vector 
associated with the tth pixel. Contextual information 
enters the labeling problem through an M R F  model 
of the statistical dependent among the neighboring 
pixels. The true labeling x* is viewed as realization of 
an M R F  imposed on X = { X ~ , X  2 . . . . .  XMI. where 
each random variable X t takes on values on L. This 
MRF serves a prior distribution for the labeling being 
estimated. 

Given a set of observed feature vectors, Y = y, and 
the contextual information as an MRF, P(X = x), the 
problem is to find the optimal estimate of the true 
labeling x*. Traditionally, each pixel was labeled based 
on y alone and then the assigned label as updated 
iteratively by the discrete relaxation process. The 
current trend is to combine these two steps using the 
Bayesian formulation. The MAP method chooses the 
estimates ~ that maximizes the posterior probability 
of X = 5, given Y = y. 

The model relating observation y to labeling x is 
chosen to ensure that the posterior distribution of X, 
given Y = y is also an MRF. The sampling algorithms 
for MRFs can then be exploited in the estimation 
process. Requiring conditional independence of the 
observed random variables, given the true labels, is 
sufficient to ensure that the posterior distribution is an 
MRF. Although the marginal conditional distribution 
of Yi given the true label Xi = xi can have any form, 
this distribution is often assumed to be normal with 
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mean #x~ and variance trx~. The observed random 
variable is, thus, continuous rather than discrete for 
the purposes of this analysis. For instance, if the prior 
distribution is taken to be a Derin-Elliott  MRF, ~16) 
the posterior distribution of X given Y = y is 

P(X = x)Y = y) = e-  v~xlY)/Zxly (9) 

where U(xly) is the energy function and Zxly the 
normalizing constant. 

3.4. Relaxation algorithms 

The posterior distribution P(X = x l Y = y) is a 
powerful tool for image analysis; in principle we can 
construct the optimal (Bayesian) estimator for the 
original image or examine the image sampled from 
P ( X  = x l Y  = y). Our job here is to find the values ofx  
which maximize the posterior distribution for a fixed 
y, i.e. minimizing the energy function. Since the size of 
X is at least 24°°°, corresponding to a small (64 x 64) 
binary image, the identification of even a near-optimal 
solution is extremely difficult. Therefore, there are 
many types of "relaxation" methods invented. Here, 
we use two MAP procedures: Gibbs sampling (or 
simulated annealing) I1°'x7) and ICM tlT'x8) and 
compare the results. 

(1) Gibbs sampling (simulated annealing). Gibbs 
sampling (or simulated annealing) is a method of 
function optimization that tries to avoid the pitfalls 
inherent in other methods for optimizing functions of 
many variables. It makes no assumptions about the 
smoothness of functions to be optimized, but imposes 
severe computational requirements. Simulated anneal- 
ing is in the class of stochastic relaxation algorithms 
and is based on the classical Metropolis et al. method. 
The parameter T called "temperature" in equations (19) 
and (20) is used to supervise the annealing process. The 
probability density function of the states in each site 
may be smoother when the parameter T is large; 
otherwise, the probability density function is sharp 
which can enhance the result when we use the Gibbs 
sampling. 

Algorithm for M A P  estimation by simulated annealin9 

(1) Choose an initial temperature T. 
(2) Initialize i by choosing x t as the color xt that 

maximizes P(Yt = y, I Xt = xt) for each pixel t. 
(3) Perturb i into i. Let A = U(~Iy) - U(~[y) 

if A > 0 then replace ~ with i 
else replace ~, by i with probability e air. 

(4) Repeat (3) N i . . . .  times. 
(5) Replace T by f ( T )  where f is a monotonically 

decreasing function. 
(6) Repeat (3)-(5) until frozen. 

To achieve the mono-decreasing function of f(T), we 
let f ( T )  = T(k) and denote T(k) as 

C 
T(k) = log(l +~k)' I < k _< K (10) 

where T(k) is the temperature, K the total iteration 
number, and C a constant which is arbitrary. 

(2) Iterated conditional modes (ICMs). Besag ~18) 
recognizes the inherent difficulty in computing the 
MAP estimate and proposes the ICM method as a 
computational feasible alternative. The ICM method 
is an attempt to estimate pixei labels in a computational 
simple manner while retaining the MRF as a model of 
prior information and to avoid the tendency of an 
MRF to degenerate into a single color image (phase 
transition). 

The key to the ICM method is the following equation 
of proportionality for the probability of the label at 
pixel t, given the observed image y and the current 
estimates of the labels of all pixels in the neighborhood 
of pixel t 

P(X, = x,I Y= y, Xsl, = Xsl,) 

oc P(Y, = y, lX, = x , )P(X,  = x, lXo, = xe, ). (11) 

The ICM algorithm is described below. The M-vector 
y is given and an M-vector of estimate pixel ~ is 
computed. 

Alforithm for estimatin9 pixel labels by I C M  method 
(1) Choose an MRF model for the true labels X. 
(2) Initialize ~ by choosing x, as the color ~, that 

maximizes P(Yt = yt lXt  = x,) for each pixel t. 
(3) For t from 1 to M, update xr by the value of x r 

that maximizes equation (11). 
(4) Repeat (3) Niter times. 

Experience has shown that about 10 raster scans of an 
image are sufficient for convergence, The computation 
is a few orders of magnitude faster than the simulated 
annealing approach to finding the MAP estimators of 
the labels. 

4. HYBRID SYSTEM AND EXPERIMENTAL RESULTS 

In this section, we will illustrate the whole system 
and some results will be shown. The color images are 
separated to three components RGB. Our hybrid 
system operates on each component image inde- 
pendently. The three component images are segmented 
individually and then combined as a segmented color 
image. Scale space filter can segment the initial image 
and get the segment number which is used by MRF. 
An image can be categorized into three types, i.e. 
texture, smooth area, and boundary. Images have 
most of the pixels belonging to the smooth area and 
few pixels related to edge and texture. The pixels in the 
smooth area with similar gray value are segmented 
using SSF, whereas, the rest of the pixels are to be 
classified using MRF. 

Our method is divided into two parts. The first part, 
the SSF, coarsely partitions the images which is called 
coarse segmentation (CS). Scale space filter can par- 
tition the histogram into several intervals which is 
bounded by zero crossing of the second deviation of 
the scale space image. The following MRF, does fine 
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f f / ~,- Label Gray value Interval 
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Fig. 9. Relation between image array and label array. The masked block in the label array is temporarily 
assigned a label value. 

segmentation (FS) to smooth the coarsely-segmented 
images. In order to compare the difference between 
using ICM and Gibbs sampling, we have used both 
approaches for image segmentation. 

The pixels located in the interval containing the 
peaks of the histogram are labeled during the process 
of SSF and the other pixels in the valley-interval are 
ambiguous. Before FS we build a label array. The 
reason is that the change of state is on the label array. 
The ambiguous pixels are temporarily assigned the 
nearest label value (Fig. 9). The masked blocks (Fig. 9) 
are the temporary label numbers which may be changed 
in the process of MRF. The representative of peak- 
interval is at the middle position of the interval. 

The MRF model processes a label array with the 
same size as the original image. Originally the label is 
unrelated with the true color. The color, after segmen- 
tation, needs to be similar to the initial image color. 
We make two color maps to keep the major colors of 
the segmented image as similar as possible to the 
original image color. Firstly, we built the map which 
contains the label number corresponding to the gray 
level such that any gray value can find its corresponding 
label number through the array (illustrated in Fig. 10). 
Those pixels in the valley-interval are temporarily 
assigned the nearest label in the gray level. Secondly, 
another map is needed to do the inverse mapping for 
the segmented label image. Since the first map transfers 
an interval of the label to a single label, the second map 
needs to select a representative from each interval of 
levels for each label and does the reverse operation. In 
Fig. 10, we find the representative of a peak interval is 
not necessarily the same as the peak value because the 
representative is selected from the middle position of 

Peak representative Middle point 

I Label Label Label 
0 1 2 

the interval. Before FS, it uses the first map to transfer 
the gray value to label number, and after FS, it uses 
the second map to replace the labels with gray-level 
values. 

In the segmentation process, we map the clustering 
pixels to a single color, and assume no noise exists. 
Here the only operation is to measure the distance 
between the original color and the label color. We 
cannot use the gray value as the distance because the 
differences among label colors are different for different 
images. The label colors are determined at intermediate 
positions of the intervals obtained from SSF (see 
Fig. 10). Each label color is just the delegate of some 
similar pixels. We measure the distance according to 
the distance between the ambiguous pixel and the 
label. If the gray value ofa pixel is located in the middle 
between two labels, the distances between the pixel and 
the two labels are both one. The distances of the next 
two outer labels are two, and so on (see Fig. 11). 
According to the distance measurement described 
above, we define the posterior probability as 

P(Xs  = x ,  JX,  = x,, rEth) 

exp ~ ~ dN(x~,ri) + ~dD(x~,o~) 
/ i = 1  (12) 

x s e A  k i =  l 

where r/s is the neighbor of site s, d N and d o the distance 
measures between neighbors and given image data. We 
use first order, four neighbors, so that the summation 

2 1 

Position of pixel 

Fig. 10. The mapping from gray value to label number. The 
gray value under the masked area is mapped to the number 

under the horizontal axis. 

Gray level 

Fig. l 1. Distance of label. 
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of ds is from 1 to 4. A is the set of all possible states S 
of the label, ct and fl are constants which control the 
weight of neighbors and given data. Controll ing ~t, we 
can emphasize the importance of neighbor-relation or  
given data (i.e. when the initial image has a lot of noise, 
the given data is no good). We may increase weight 
to use the relation of neighbors to improve the result. 
If the original image is good, we can decrease the value 
ofm to get better results. However, ifct is too small, the 
term d.+ will make less influence than the other term 
do, so that the image will change very slowly. In our 
experiments, ct is fixed to 0.3,/7 = 1 and the iteration 
number (ICM) is 10. 

Figure 12(a) shows the initial image and Fig. 12(b) 
illustrates the outlines of the segmented regions after 
SSF which has some very small regions. Figures 12(c) 
and (d) are the outlines of the segmented regions after 
M R F  using ICM (10 iterations) and Gibbs sampling 
(400 iterations), respectively. Comparing Figs 12(c) 
and (d), we can find that both results are similar except 
Fig. 12(c) has smaller regions. It occurs because of the 
random choice of states. Figures 13 and 14 are other 
examples which also show similar results. 

F rom the experimental results we find the SSF is 
very effective. The benefit of the SSF is that it can 
determine the number of labels. The SSF dominates 
the segmentation process. However, if some peaks or 
valleys of the histogram are misclassified by SSF, the 
final result might be worse. The following M R F  
compensates the misclassified pixels. The major dis- 
advantage of the M R F  using simulated annealing is 
that the convergent rate is too slow (about 4 h in our 
Solbourne 24 MIPS  workstation). The ICM algorithm 
makes very good improvement,  it takes less than 10 
min in our Solbourne workstation, and the results are 
not very different from those using simulated annealing. 
Translating the RGB to another axis with linear 
translation or modifying the rule of selecting active 
nodes may avoid the problems. 

5. CONCLUSION 

In this paper we present a new hybrid method for 
color image segmentation. Although the algorithm 
based on M R F  does not restrict the state number in 
each site, the results show that the state number should 

Fig. 12(a). Original image. 
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Fig. 12(b). Segmented image after SSF. 
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Fig. 12(d). Segmented image using Gibbs sampling after 400 
Fig. 12(c). Segmented image using ICM. iterations. 
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z ; 

Fig. 13(a). Original image. 

-k 

Fig. 13(b). Segmented image after SSF. 

Fig. 13(c). Segmented image using ICM. 

? 

Fig. 13(d). Segmented image using Gibbs sampling after 500 
iterations. 

) 

Fig. 14(a). Original image• Fig. 14(b). Segmented image after SSF. 
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Fig. 14(c). Segmented image using ICM. 

_ ' P "  % 3  

. r  

Fig. 14(d). Segmented image using Gibbs sampling after 500 
iterations. 

be limited, If there are too many states for each site, 
the convergence rate will become very slow, and the 
segmented image is unstable (trapped in the local 
minima). We first translate the real image into the 
label image for further segmentation. The label image 
is obtained by segmenting images by human-like 
histogram-based segmentation called SSF. 

Scale space filter uses a Gaussian function to smooth 
the histogram and uses the zero crossings of the second 
deviation associated with x to define the intervals 
containing peaks or valleys. Finally it chooses the most 
stability nodes to set the segmental intervals, The final 
step, i.e. choosing most stable intervals, is very import- 
ant and its rule is flexible. Although Witkin declares 
that the longest node is the most stable node, we found 
that the final result does not always correspond to the 
best one. It may lose some peaks or valleys or capture 
too much detail. We are working on developing a 
general method that can get opt imum segmentation of 
the histogram to different scale intervals. 

Here, we have implemented algorithms for color 
image segmentation which proves to be a very success- 
ful process. The color images provide, besides inten- 
sity, additional information in the image. The color 
image segmentation is a more challenging task than its 
monochrome counterpart. Its applications are becom- 
ing increasingly significant nowadays. 
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