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The ICM (Iterated Conditionat Modes) algorithm has r€cently been exploited
for image segmentation. The ICM segmentation algorithm iteratively updates

the label of each pixel Llntil a prescribed criterion is achieved. Most exJ'eriments

and work have assumed that the true labeling is modeled by a discrete Markov

random field and that the observed degraded image is formed by adding i i d'

Caussian noise to the true image This paper reports on the ICM algorithm with

various assumptions of degradation models. We characterize the mathematical

formulas, list the tCM algorithm, and giv€ the experiments based on known model

parameters to segment synthetic images. The ICM algorithm segments rmages

reasonably well und€r a variety of degradation models even though prior informa-

tion is inadequate. A pmctical application of tCM algorithm for reconstructing

an infrared image for target recognition is giv€n-

Kelwrds: Cibbs distribution, lCM, Markov random field' pixel lab€ling, seg-

mentatron

1. INTRODUCTION

Let an MxN intensity image be defined as a coloring on an MxN lattice with

possible colors 0, 1, ..., 255. Given an MxN intensity image, the problem is to

label each site or pixel in this MxN lattice to optimize some prescribed criterion'

The problem is either called image restoration [2' 9] or image segmentation [6, 7]'

In image restoration, the labels in the true image can be chosen from t0' I ' " . 255) '

In image segmentation, the true labels can be chosen from A = {0' l' ', G-1}'

where C < < 255. For example, the labels can refer to a land-use category ln edge

detection, there are only two possible labels (edge or non-edge) Thus, the edge

detection oroblem can be viewed as a special case of image segmentation with G = 2'
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This paper deals with image segmentation. A segmentation algorithm re-
quires information about the image. A segmentation algorithm good for one
image may not be appropriate for other images. A good review of segmentation
techniques up to 1981 can be found in u5l. Haralick and Shapiro [10] also
surveyed segmentation techniques with emphasis on edge detection.

Image segmentation using a Markov random field (MRF) to capture con-
textual information has been widely reported 12, 5-7, 9, 12-141. Most papers
either concentrate on the results of segmenting individual images or emphasize
statistical analysis of image data. MRF model-based segmentation algorithms
have had at least one of the following drawbacks making duplication of results
difficult: (i) the mathematical formulas were not given exactly, (ii) the algorithms
were not listed, (iii) the parameters used in the algorithms were not clearly
specified, (iv) the image data were not sufficiently described.

Dubes et al. [8] have recently demonstrated that the ICM algorithm is a
powerful MRF-Based labeling algorithm for image segmentation. In all of their
experiments, the algorithm itself assumed that the degraded images were formed
by adding i.i.d. Gaussian noise to each pixel of the true images, although some
images involve correlated noise and textured regions. This paper reviews and
extends the ICM algorithm to various models of degradation. We not only
emphasize the mathematical results but also report experimental results and
demonstrate its applicarion to an in frared image.

2. BACKGROUND

The ICM algorithm attempts to label a lattice by locally optimizing the a
posteriori distribution [2, 8]. An MRF is imposed as the prior distribution and
a degradation model is assumed so that the a posteriori distribution is also an
MRF. Fig. 1(a) defines a notation for the relative neighbors of pixel t while
Fig. 1(b) shows the orders of neighbors of pixel t up to order 5 [4].

I : -  I  I t -7 t : -6 t :+8 r + 1 2

t : -9 t : -3 t : t 4 t : + 1 0

t:- 5 t : -  I t : +  I

t : '  l 0 t : -4 l :+3 t:+9

t : -  8 t .+7 t : + l l

5 4 3 4 5

4 2 1 2 4

3 I t 3

4 2 1 2 4

5 4 3 4 5

( i l  )

Fig. l� The pixels and

(b)

orders of neighbors of pixel t.
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In the following discussion, we assume that the true labeling is a realization
of an MRF whose Gibbs distribution is given by

f(x) : e-u(r) /2,

where x is an MN-tuple vector, Z is the normalizing constant, and the energy
function U is defined as

M N c

u(x) = Z lp,r1x,, x,...;, (1)
t = l  r = l

w h e r e  J ( a , b )  :  - 1  i f  a = b , 0  i f  a * b ;  c : z f o r a l s t - o r d e r M R F a n d c = 4 f o r
a 2nd-order MRF. For details refer to u, 4, 1ll.

The observed images are obtained by degrading the MRF with the schemes
described below.

Case I

Each pixel is degraded with i.i.d. Gaussian noise. In other words, the ob-
served image, denoted by a random vector Y, is assumed to come from a known
distribution conditioned on X:x, whose distribution is given by

f(ylx) = ! f(y'lx).

Under the assumptions of (1) and (2), the a posteriori distribution of X con-
ditioned on y (Xly) also defines an MRF [Appendix A]. In the case where

f(y'lx) ." N(i,"., 4;,

the distribution of Xly and its energy function are characterized by

f(xlD = €u('!)/Zxty, where Zxlv is the normalizing constant, and

example, in a 2nd-order neighborhood, xa, : {X,,*r, \:+2, 4:+:, x,.ro}. A simple
derivation according to Eq. (l) of Appendix A shows that

f(x,lxu,,y) = e-u'/Zp where Z, is a normalizing constant, and

I  ^ (v, -*) '
u, = : tn(4) * # + Ep.lr(t, x, *) + J(x,, x,.-)1. (5)- 

Z 2o:, r=r
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Case 2

Pixels are degraded by correlated noise generated from an auto-normal MRF
model [1, 4] whose density function, conditioned on the true labeling, is given by

IB IY '
f(ylx) : -*-exp[-(y - p"fB(y - p)/2]1. (6)

lzno-t  -

The matrix B is an MNXMN block circulant matrix with M'� blocks of NxN cir-
culant matrices Bii's [3, 4] defiined below.

B =

Br, B,"" r '  : i " : ' '
B , ,  . B , '

For the 2nd-order neighborhood,
Br  :c i rcu lant  (1,  -  0 t ,0 ,  0 , . . . . . ,0 ,  -  0r ) ,
Br2 = circulant (- 0r, - 0r, 0,0,.. . ..,0, - 04),
Brr: circulant (- 0r, - 0n, 0,0,. ... . ,0, - e3),
B ' , = O  f o r  2 < j < N .

The distribution Ylx specified in Eq. (6) is also called a Gaussian Markov random
field (GMRF). It can be shown that f(xly) also defines an MRF whose energy
function is given by

M N T  I
u(x ly)  =  t l ; { (y ,  -  K,y  -  zDe, tv ,  -  A,Xy, , , ,  -  A,  ) }  +

t= | Lzo-

Note that the size of neighborhoods for Ylx and X, c' and c, need not be the
same, but one must be dominated by the other to guarantee that f(xly) defines
an MRF. Without loss of generality, we assume that c' = c in this paper. A
further simplification shows that the conditional density, X,, the label of pixel t,
given its neighbors can be expressed as

f(x,lxr"y) = e-u'/Zo where Z, is a normalizing constant, and

l- s,,

| "r"
I
I  B , ,

fp,rt-,, ",,-.)]
('7)

", = 
UUt, 

- tt)2 - ZD,O.1y, -K,)t(y,,-. - r,^,,-)+(y, . - ii",-,)l)

+ lJ lJ,LJlx( x, +r)+J(xU xt ,)1.
r =  I

(8)
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Case 3

The observed image y is an MxN multispectral image, so each pixel consists
of a vector of the same length, say d. Our goal is still to find an MxN labeling
x which maximizes the a posteriori distribution of X given y. We further assume
that

f(ylx) = II f(y'lx), and f(y'lx)." NG,., C,),
i -  I

where y., p. are d-tuple vectors and C. is a dxd positive definite matrix. Under
the assumptions of (1) and (9), the a posteriori distribution of Xly also defines
an MRF whose distribution and energy function are characterized by

f(xly) = sut'ttt 17* y, where Z" , is a normalizing constant, and

329

(e)

u(xlv) =

A simplification shows that the conditional density can be expressed as

f({ lxauy) = e-"'/2" where Z, is a normalizing constant, and

,r=,4rt.,, r,.l]. (ro),i$t'''t",'+ (y, - rr",)'C-,-'(yl - pJ) +

I
y ,  = ; { l n rC-  |  .  t y ,  -p , ) 'C -  ' ( y ,  -  p , ) }  +  E6 . { l t * . ,  x , .  . )  +  J (x , ,  x , . . ) } .,  

2 .  I  r , .  
, ,  ,

( 1 1 )

The ICM algorithm [2, 8] searches for an optimal labeling x based on an
observed image y by iteratively minimizing the conditional energy given in Eqs.
(5), (8), or (11). Notice that the ICM algorithm only guarantees finding a local
optimal labeling. The environments of the ICM algorithm are described in the
followins S€ction.

3. PIXEL LABELING ALGORITHM-ICM

The ICM algorithm was first proposed by Besag in 1986 to find an optimal
labeling x based on a given intensity image y. A prior MRF presents contextual
information; for example, if all B,'s in Eq. (1) are positive and large enough,
the MRF tends to generate homogeneous regions [4]. Given the initial labeling,
it iteratively updates the label of pixel t by maximizing f(x,lxr,,y) for t= 1,2, ....,
MN, where xa, = {x,,_, x,.*.lr= l, ..., c}. Note that the formula f(x,lxr,,y) =
f(x,ly,*,) was given in Eqs. (5), (8), or (11) according to different assumptions
on f(ylx), where i, - {x,lj=1, 2, ...., MN, j*t}. The procedure is repeated
until the local minimum energy is achieved. The initial labeling is usually obtained
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by applying a maximum likelihood estimation (MLE) individually on each pixel,
namely, a classification without using spatial information. The ICM algorithm
finds a labeling with a local minimum energy, it does not guarantee finding a
labeling with a global minimum energy. Dubes et al. [8] demonstrated that under
wrong prior information, labeling with a global minimum energy need not be the
best solution. Besag I2l showed by experiments that it was usually enough to
take 6 complete scans or fewer to achieve a reasonable labeling. The ICM
algorithm is listed below and the experiments are given in the next Section.

ICM Algorithm

Initialize a labeling by applying MLE for each pixel.
F o r t = 1 t o M N
& + go if f(x,=golxu,,y) > f(x,=glxr,y) for all geA and g.eA.

(c) Repeat (b) until "the energy achieves a local minimum" (6 scans here).
(d) x is the required labeling.

4. EXPERIMENTS

We now repoft on experiments showing how the ICM segmentation algorithm
segments the degraded images obtained with the degradation processes given in
Section 2. To let a boundary pixel have the same number of neighbors as an
interior pixel, we assume that all images have periodic boundaries. Throughout
the experiments, all of the images had size 9x64, and the isotropic 2nd-order
Ising model I l ] was used as the prior distribution, i.e., c:4, and Bt: P2= Fr= Ao= A
in Eq. (l), where p=1.5. The stopping criterion was defined to be 6 raster
scans. In each case, our goal was to find the binary segmentation which had a
local minimum of energy defined in Eqs. (a), (7), or (10). Two true labelinEs,
each consisting of two labels 0 and l, were considered throughout all of the
experiments. The images displayed in Fig. 2 have gray levels 100 and 240 cor-
responding to labels 0 and 1, respectively, for display purposes. In the following
experiments, we assume that the true images have gray levels 130 and 160 cor-
responding to labels 0 and I to avoid gray values beyond the display range
[0, 25s].

(a)
(b)

Fig. 2. The Display of Images Corresponding to True Labelings.
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Expeiment-I Degraddion with i.i.d. Gaussisn Noise

The degraded images shown in Figs. 3(a) and 3(b) are obtained by adding
i.i.d. Gaussian noise with mean 0 and variance 900 to each pixel of the images
in Fig. 2. Both of the gray level histograms of images in Fig. 3 are unimodal,
so simple thresholding techniques are not appropriate [15]. We apply the ICM
algorithm by using f(x,lxu,,Y) in Eq. (5) with known parameters to segment the
degraded images in Fig. 3. The segmentation results shown in Figs. 3(c) and 3(d)
are visually similar to the true imqges in Fig. 2, although not perfect.

Fig. 3. The Degraded and Segmented lmages in Experiment-l.

Experiment-2 Degradation with Correlsted Noise

The degraded images shown in Figs. 4(a) and 4(b) were obtained by adding
the correlated noise generated from the Gaussian Markov random field [Appendix
B,  1-41 wi th parameters p=0,  o:30,0,=6r :9.19,  0r=0+:  -0.05 to the t rue
images. Again, the gray level histograms of these images are unimodal, so simple
thresholding techniques without using spatial information will lead to bad seg-
mentation results. We applied the ICM algorithm by assuming f(x,lxr,,y) in Eq.
(8) with known parameters to the degraded images in Figs. 4(a) and 4(b). The
segmentation results shown in Figs. 4(c) and 4(d) are still reasonable since the
signal to noise ratio is low (= t). But the results in this Experiment are not as
good as those in Expeiment-I; we suspect that the wrong prior model (the true
labeling is not a realization of the prior MRF model) associated with the cor-
related noise may attenuate the segmentation results.

ffiffiffiffi

ffi
(d)

ffi
( c )

ffi
(b)

ffi
( a )

(d)(c)(b)(a)

Fig. 4. The Degraded and Segmented Images in Expe ment-2.
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Experiment-3 Multispectral Images

This experiment examines the extension of ICM to multispectral images.
We assume the true image is a 2-band binar! multispectral image, and each pixel
consists of a 2-tuple vector whose components have two possible values' The
two possible vectors coresponding to each pixel are (100, 130) and (120, 160).
The band-l true image consists of gray levels 100 and 120. The band-2 true
image consists of gray levels 130 and 160. The degraded images are obtained

by addine i.i.d. multivariate normal noise with po:p'=0, C.:C'=[133;33].

each pixel of a true 2-band image. Figs. 5(a) and 5(b) show the degraded images
corresponding to different bands whose corresponding true labeling is given in
Fig. 2(a). We applied the ICM algorithm by assuming f(x,lxr,,y; in Eq. (ll) with
known parameters to the degraded images in Figs. 5(a) and 5(b). The segmenta-
tion results shown in Fig. 5(c) are almost perfect compared with the true image
given in Fig. 2(a).

We repeat the process mentioned in this Experiment on the 2nd irnage whose
true labeling corresponds to Fig. 2(b). The degraded images corresponding to
two bands are given in Figures 5(d) and 5(e), respectively. The segmentation
result shown in Fig. 5(0 are again almost perfect compared with the true image
given in Fig. 2(b).

(a) (c)

(e)

(b)

(0(d)

Fig. 5. The Degraded and S€gmented lmages it Experiment-3.
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Experiment-4 Application to a Real Image

This experiment demonstrates the practicality of an ICM algorithm in the
real world. Fig. 6(a) is a 200x200 infrared image with possible gray leves from
0Io 255. The histogram of the gray levels is unimodal. An ICM algorithm with
estimated parameters used to segment and localize the object is described below.

ICM Algorithm with Estimated Parameters

(a) Let the histogram of a grayJevel image take values from [4o, p,], and
let oo and o, be o-percent and ?-percent quantile of histogram, re-
spectively.

(b) Find an initial x by applying MLE to label each pixel without using
contextual information (i.e., B=6 in Eq. (5), (8), (11). Let P=1.5.

( c )  F o r  t : l t o  M N
xr-go if f(4:golxr,,y) > f(x,:glxrt,y) for all gcA and g0eA using
Eq. (5).

(d) Update means and variances pi, oi, i=0, l, by MLE, based on y and
current x.

(e) Repeat (c) K iterations until "the energy achieves a local minimum.',
(0 x is the output binary image.

The choice of (e, "y, K) depends on the signal to noise ratio. It is inap-
propriate to try to find a mathematical optimal (cr, f, K). In this experiment,
we heuristically choose a= 10, 7=90, and K:6.

Note that this algorithm is developed for binary segmentation. For seg-
mentation with more than two labels, step (a) may be modified by a clustering
algorithm; see [14] for an instance.

J J J

Fig. 6. The Infrared Image and the Rssult of the ICM Algodthm.
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The result of applying the ICM algorithm with estimated parameters to the
image in Fig. 6(a) is displayed in Fig. 6(b). The result is encouraging even if
neither the prior nor the degradation model is suitable for the image.

5. DISCTJSSION AND FUTURE RESEARCH

The existing MRF model-based segmentation algorithms U, 7, 9, 12, l3I
are restricted to using images which are degraded by adding independent noise
to each pixel. We considered more flexible degradation models. We have derived
the mathematical formulas for the ICM algorithm according to various assump-
tions of the degradation model and have demonstrated by experiments for both
artificial and infrared images how the ICM algorithm can be used for image
segmentation. The ICM algorithm can be easily adapted as other priors and
degradation models f(x) and f(yJx) according to the theorem given in Appendix A.

Although the experiments are restricted to segmentation for binary labels,
the extension to multi-level labelings is straightforward but needs further study.
It must be mentioned that the true labeling may never be a realization of the
prior model. Moreover, it is not necessary to assume that the prior one is an
isotropic Ising model [4, ll]; other discrete MRF models [6] may also be used.
The choice of the best prior model is both image-dependent and goal-oriented.

We summarize some possible research in the future as follows.
(l) The extension of the ICM algorithm to segment images with more than

two labels.
(2) The effect of prior and degradation models on synthetic and real images.
(3) The application of the ICM-based algorithm to edge detection and boundary

exrracuon.
(4) Applications to real images such as X-ray images, ultrasonic images, and

microphotographs.

REFERENCES

Besag, J., "Spatial Interaction and the Statistical Analysis of Lattice Systems,"
J. Royal Stat. Soc. Ser,B, yol.36, l9'14, pp. 192-236.
Besag, J., "On the Statistical Analysis of Dirty Pictures," l. Royal Stat.
Soc. Ser.B, Vol. 48, 1986, pp. 259-302.
Chellappa, R., "Two-Dimensional Discrete Gaussian Markov Random Field
Models for Image Processing," Progress in Psttern Recognition 2 edited by
L.N. Kanal and A. Rosenfeld, North-Holland Publ. Co., 1985, pp. 79-112.
Chen, C.C., Markoy Random Fields in Image Analysis, Ph.D. Thesis,
Michigan State University, East Lansing, 1988.
Chow, P.B., Brown, C.M., and Raman, R., "A Confidence-Based Approach
to the Labeling Problem," IEEE Workshop on Image Understdnding, }}.liami,
1 9 8 7 ,  p p . 5 l - 5 6 .
Cohen, F.S. and Cooper D.B., "Simple Parallel Hierarchical and Relaxation
Algorithms for Segmenting Noncausal Markovian Random Fields," IEEE
Trans. Pattern AnaL Machine Intell., yo].9, 1987, pp. 195-219.

5 .

t .

2.

n

o .



ICM SEctvcx{'rATIoN ALcoRrrHM

7. Derin, H. and Elliott, H., "Modeling and Segmentation of Noisy and Textured
Images Using Gibbs Random Fields," IEEE Trans. Patter Anal. Machine
Intell., vol.9, 1987, pp. 39-55.

8. Dubes, R.C., Jain, A.K., Sateesha, S.G., and Chen, C.C., "MRF Model-
Based Algorithms for Image Segrnentation," in Proc, IEEE Intenotional
Conference on Pottern Recognition, 1990, pp. 808-814.

9. Geman, S. and Gernan, D., "Stochastic Relaxation: Gibbs Distributions,
and the Bayesian Restoration of Image s," IEEE Trans. Patteri Ana!. Machine
Intell., Yol. 6, 198r'', pp. 721-741.

10. Haralick, R.M. and Shapiro, L.G., "Survey: Image Segmentation," Cot l-
pater yision, Graphics, and Inmge Prccesing, Yol. 29, 1985, pp. 100-113.

ll. Kindermann, R. and Snell, J.L., Markov Random Fields.ond Their Applica-
liozs, Arrerican Mathematical Society, Yolume I, 1980.

12. Mardia, K.V. and Hainsworth, T.J., "A Spatial Thresholding Method for
Image Segrnentation," IEEE Trans. Pattern Anal. Machine Intell., Yol. 10,
1988, pp. 919-927.

13. Marroquin, J., Mitter, S., and Poggio, T., "Probabilistic Solution of Ill-Posed
Problems in Computational Vision," "/. American Statistical Association,
Vol. 82, 1987, pp. 76-89.

14. Pappas, T.N. and Jayant, N.S., "An Adaptive Clustering Algorithm for
Image Segmentation," in Proc. IEEE International ConJerence on Computer
Yision, 1988, pp. 310-315.

15. Rosenfeld A. and Kak, A.C., Digital Picturc Procedng, Vol. 2, New York:
Academic Press. 1982.

r* *fl*."f,T?#f*r*o-
Let P(x) : f(x ly) : f(x lv),zf(y), xieA for each i, and assurne

(l) f(ylx) :,llf(r,lx),

(2) f(x.l&,r+t) : f(x,lxrJ, namely, x is a realization of an MRF.

defines an MRF for Xly.

Proof3 Want to prove P(x,li) : P(x,lxaJ.

P(c, iJ r(*, &lv)

335

P(x" l iJ:
Drla=g, *1

geA
E f(\=s, i,ly)

geA
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MN

f(ylx., i,) f(x.liJ {, lJ+, f(vrlx,)} f(v'lx') f(x,|f;.)

,D.^ Et*rol (\:cl*t p^ [tr"r":rl rt*,=el*.J]

On the other  hand,  le tT = S-{s}- {as}anddenoteal l  4 ,  ieTbyxl ;  then

lr1xu,, a, x.,; 
_ ?tttl*,,, 

x,, xr) f(xa,, x,, xr)

P(x, lxu; =

I l-l "t*,,. *,, *.1-l"''"f- l

Denominator :[-E^ tt, -O.nv,lx)] t.4,f(v,lx.)l f(y,lx,) f(x,lfJ f(i,)tl
L.eA 

xr ier lea! 
_-l

: I n ,tr.t^;][r {r n r(v,tx,)r(*J}'lfD rrr,t*,1(^,t*,,r-l
I  r e a r  I l  \  i e r  l l x . F A  I- - t _ - - l L - l

Numerator = Df n rru,t*.lt t 
--l

x, tier 
- , 

n.fiv'lx')l (v'lx') f(x'lx') i(i')J

- -tr'- -1
: 

LJ. 
f0,lDJLL { rl (vilxJ(iJ} f(y.lx,)ftx,lx,.}_l

Then,

p[trr.,:r, r; n',=r1*y] -t[, H, r(y1lx)] r1y.tx,=gr rt',=et*J]

f(y.lx) f(x,li) f(y,lx,) f(y"lx,,)

D l-D rrvt*,., x-, x,) f1x,., x", x,;-l
\€ALxr -l

f(y,lx,)f(x" lx,)
P(x,lxu,) = -:-

L [f(y.lx.) f(x,lx;,)]
rseA

Therefore, P(x,liJ = P(x,lxu)' namely, "P" defines an MRF.

( l )
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APPENDIX B
GMRI Sampling Algorithm

337

A Gaussian Markov random field (GMRF), defined on a lattice L, can be viewed
as a multivariate normal distribution [Bes74] with a mean vector Fl consisting
of all p's and a covariance matrix lB [1], where the correlation matrix B is
block-circulant. For a 2nd-order GMRF, B was given in Case 2, Section 2. There
are six parameters, 1t, o, 0t, e2, 03, and 0a in a 2nd-order GMRF. A sampling
algorithm, proposed by Chellappa [3], is given below.

/* Generate an MxN image from a GMRF; A(i,i) = B(1, i + (i - l)N)*/
(a) Generate an MxN array 4 with each element i.i.d. from N(0,o'�),
(b) Apply 2-D Fourier transform on ?, save the result in ?,
(c) Apply 2-D inverse Fourier transform on A, save the result in A,
(d)  x(u,v)  -  a1u,v;Z\ -AG$ for  u=0,1, . . . . ,M- l ;  v=0.1, . . . . ,N-1.
(e) Apply 2-D inverse Fourier transform on x, save the result in x.
(0 x+Fl is a realization.
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