H2: Maximum Likelihood Estimators

1. Let X_1, X_2, \cdots, X_n be a random sample size n of Poisson distribution with mean λ, that is,
 \[f_i(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \ x = 0, 1, \cdots \]
 Find the maximum likelihood estimator of λ.

2. Let X_1, X_2, \cdots, X_n be a random sample size n of Normal distribution with mean μ and variance σ^2, that is,
 \[f_i(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}, \ -\infty < x < \infty \]
 Find the maximum likelihood estimator of μ and σ^2.

3. Let X_1, X_2, \cdots, X_n be a random sample size n of Exponential distribution with mean θ, that is,
 \[f_i(x) = \frac{1}{\theta} e^{-x/\theta}, \ x \geq 0 \]
 Find the maximum likelihood estimator of θ.

4. Let X_1, X_2, \cdots, X_n be a random sample size n of Geometric distribution with parameter p, that is,
 \[f_i(x) = (1-p)^{x-1}p, \ x = 1, 2, \cdots \]
 Find the maximum likelihood estimator of p.

5. Let X_1, X_2, \cdots, X_n be a random sample size n of χ^2 distribution with r degrees of freedom, that is,
 \[f_i(x) = \frac{1}{\Gamma(r/2)2^{r/2}} x^{(r/2)-1} e^{-x/2}, \ x > 0 \]
 Find the maximum likelihood estimator of r.