Test 2 for ISA5305, Fall 2019

Due in class of Thursday, December 26, 2019

Name: \qquad ID : \qquad
(15%) 1(a) Let X be a continuous type of random variable that takes only nonnegative values. For any $\beta>0$, prove that

$$
P(X \geq \beta) \leq \frac{E(X)}{\beta}
$$

(15%) $1 \mathbf{(b)}$ Let X be a continuous type of random variable with mean $E(X)=\mu$ and variance $\operatorname{Var}(X)=\sigma^{2}$. For any $\tau>0$, show that

$$
P(|X-\mu| \geq \tau) \leq \frac{\sigma^{2}}{\tau^{2}}
$$

(30\%) 2. Fill the following blanks (no partial credits).
(a) Let $\left\{X_{i}, 1 \leq i \leq 9\right\}$ be a random sample of size 9 from $N(2,1)$. Define $\bar{X}=\frac{1}{9} \sum_{i=1}^{9} X_{i}$ and $Y=\sum_{i=1}^{9}\left(X_{i}-2\right)^{2}$. Then
the moment-generating function $M_{\bar{X}}(t)=$ \qquad
the moment-generating function $M_{Y}(t)=$ \qquad
(b) Let $\left\{Z_{i} \sim N(0,1), 1 \leq i \leq 10\right\}$ be a random sample of size 10. Define $V=\sum_{i=1}^{10} Z_{i}$ and $W=\sum_{i=1}^{10} Z_{i}^{2}$. Then
the probability density function of $V, f_{V}(x)=$ \qquad
the moment-generating function $M_{W}(t)=$ \qquad and the p.d.f. of W, $f_{W}(x)=$ \qquad
(c) Let $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ be a random sample of size n from the exponential distribution with $E\left(X_{n}\right)=3$. Define $Y=\sum_{i=1}^{n} X_{i}$. Then
the p.d.f. of $Y, f_{Y}(y)=$ \qquad the moment-generating function of $Y, \phi_{Y}(t)=$ \qquad
(d) Let $Z \sim N(0,1)$. Define $Y=3 Z+2$, then
the p.d.f. of $Y, f_{Y}(y)=$ \qquad
the moment-generating function of $Y, \phi_{Y}(t)=$ \qquad
(e) Let $\left\{X_{i} \sim \chi^{2}(1), 1 \leq i \leq n\right\}$ be a random sample and define $W_{n}=\left(\sum_{i=1}^{n} X_{i}-n\right) / \sqrt{2 n}$. According to the Central Limit Theorem, the limiting distribution function of W_{n} limit $_{n \rightarrow \infty} P\left(W_{n} \leq w\right)=$ \qquad the limiting moment-generating function is $\operatorname{limit}_{n \rightarrow \infty} M_{W_{n}}(t)=$ \qquad
($\mathbf{1 0 \%}$) 3. Let the r.v. X have the p.d.f. $f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1$, where $\alpha, \beta>0$ are known positive integers.

Find $E[X]$ and $\operatorname{Var}[X]$.
Hint: $\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t$ and $\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$.
(20\%) 4. Let $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$ be the order statistics of a random sample $\left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$ from the uniform distribution $U(0,1)$.
(a) Find the probability density function of $X_{(1)}$.
(b) Use the results of (a) to find $E\left[X_{(1)}\right]$.
(c) Find the probability density function of $X_{(n)}$.
(d) Use the result of (c) to find $E\left[X_{(n)}\right]$.
($\mathbf{1 0 \%} \mathbf{)}$) 5. Let X have the p.d.f. $f(x)=\beta x^{\beta-1}, \quad 0<x<1$ for a given $\beta>0$. Define $Y=-3 \beta \ln (X)$.
(a) Compute the distribution function of $Y, P(Y \leq y)$, for $0<y<\infty$.
(b) Derive the moment-generating function $M_{Y}(t)$.
(c) Compute $E(Y)$ and $\operatorname{Var}(Y)$.

