H4: Orthogonality

- **1.** Given $\mathbf{x} = [1, 1, 1, 1]^t$ and $\mathbf{y} = [8, 2, 2, 0]^t$.
 - (a) Determine the angle between x and y.
 - (b) Find the vector projection **p** of **x** onto **y**.
 - (c) Verify that $(\mathbf{x} \mathbf{p}) \perp \mathbf{y}$.
- **2.** Compute $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_{\infty}$ for each of the following vectors.

(a) $\mathbf{x} = [-3, 4, 0]^t$, (b) $\mathbf{x} = [-1, -1, 2]^t$

- **3.** Let $\mathbf{u} = [2, 3, 4]^t$, $\mathbf{v} = [1, \gamma, 1]^t$. Find γ such that \mathbf{u} and \mathbf{v} are orthogonal.
- 4. Let $\mathbf{x} = [1, 2, 3]^t$, $\mathbf{y} = [-2, 3, 1]^t$. Find the angle θ between \mathbf{x} and \mathbf{y} .
- **5.** Let $\mathbf{x} = [1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]^t$, $\mathbf{u} = [1, 0, 0, \cdots]^t$. Show that (a) $\|\mathbf{x}\|_2 = \frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$.
- **6.** Let $\mathbf{x} \in \mathbb{R}^n$ and show that

(a) $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \|\mathbf{x}\|_{1}$, (b) $\|\mathbf{x}\|_{1} \le \sqrt{n} \|\mathbf{x}\|_{2}$, (c) $\|\mathbf{x}\|_{2} \le \sqrt{n} \|\mathbf{x}\|_{\infty}$

7. Sketch the set of points $\mathbf{x} = [x_1, x_2]^t \in \mathbb{R}^2$ such that

(a) $\|\mathbf{x}\|_2 = 1$, (b) $\|\mathbf{x}\|_1 = 1$, (c) $\|\mathbf{x}\|_{\infty} = 1$

- 8. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be an orthonormal basis for an inner product vector space V and let $\mathbf{x} = \mathbf{u}_1 + 2\mathbf{u}_2 + 2\mathbf{u}_3$ and $\mathbf{y} = \mathbf{u}_1 + 7\mathbf{u}_2$. Compute
 - (a) $\langle \mathbf{x}, \mathbf{y} \rangle$, (b) $\|\mathbf{x}\|_2$, $\|\mathbf{y}\|_2$, (c) the angle between \mathbf{x} and \mathbf{y}
- **9.** Find the best least squares fitting line for the data set $\{[-1,0]^t, [0,1]^t, [1,3]^t, [2,9]^t\}$ and plot your solution associated with the data points.
- **10.** Let $\mathbf{x} = [1, 1, 3, 5]^t$ and let $Q_j \in \mathbb{R}^{4 \times 4}$ be orthogonal for $1 \le j \le 4$, find (a) $||Q\mathbf{x}||_2$ and (b) $det(Q_1Q_2Q_3Q_4)$

Solutions for H4: Orthogonality

- **5.** Let $\mathbf{x} = [1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]^t$, $\mathbf{u} = [1, 0, 0, \cdots]^t$. Show that (a) $\|\mathbf{x}\|_2 = \frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$.
- 6. Let $|x_k| = ||\mathbf{x}||_{\infty}$, then show that

(a) $\|\mathbf{x}\|_{2}^{2} \leq \|\mathbf{x}\|_{1}^{2}$ (b) $\|\mathbf{x}\|_{1}^{2} \leq n\|\mathbf{x}\|_{2}^{2}$ by Cauchy–Schwarz inequality (c) $\|\mathbf{x}\|_{2}^{2} \leq n\|\mathbf{x}\|_{\infty}^{2}$

- 7. (a) circle, (b) |x| + |y| = 1, (c) unit square boundary.
- 8. (a) $\langle \mathbf{x}, \mathbf{y} \rangle = 15$, (b) $\|\mathbf{x}\|_2 = 3$, $\|\mathbf{y}\|_2 = 5\sqrt{2}$, (c) the angle between \mathbf{x} and \mathbf{y} is $\frac{\pi}{4}$.
- **9.** The best least squares fitting line for the data set $\{[-1,0]^t, [0,1]^t, [1,3]^t, [2,9]^t\}$ is y = 2.9x + 1.8

10. Let $\mathbf{x} = [1, 1, 3, 5]^t$ and let $Q_j \in \mathbb{R}^{4 \times 4}$ be orthogonal for $1 \le j \le 4$, then

(a)
$$||Q\mathbf{x}||_2 = 6$$
 and (b) $det(Q_1Q_2Q_3Q_4) = \pm 1$