H2: Determinants

(1)
$$A = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 0 & -1 \\ 4 & 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix}$

- (a) Show that det(A) = -14, det(B) = 0, det(C) = 1
- (b) Find the adjoints of matrices A, B, C, respectively.
- (c) Use Cramer's rule to find A^{-1} and C^{-1} , respectively.

(2) Let
$$D = \begin{bmatrix} 2 & 4 & 3 & 1 \\ 0 & 5 & 6 & 3 \\ -1 & 2 & 4 & -2 \\ 7 & 0 & 1 & 3 \end{bmatrix}$$
, $E = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 5 & 6 \\ & & & \\ 3 & 3 & 7 & 9 \\ & 3 & 5 & 6 & 10 \end{bmatrix}$, $F = \begin{bmatrix} 1 & 6 & 11 & 16 & 21 \\ 2 & 7 & 12 & 17 & 22 \\ & 3 & 8 & 13 & 18 & 23 \\ & 4 & 9 & 14 & 19 & 24 \\ & 5 & 10 & 15 & 20 & 25 \end{bmatrix}$

- (a) Show that det(D) = 340, det(E) = 1, det(F) = 0
- (3) Let $A \in \mathbb{R}^{n \times n}$, if there exists an $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$. λ is called an eigenvalue. For a small $n \leq 3$, we can directly compute the eigenvalues of a matrix A by solving the n-degree characteristic polynomial equation $det(\lambda I A)$.
 - (a) Give the characteristic polynomial equation of matrices A, B, and C given in problem (1).
 - (b) Solve the polynomial equations in part (a).
- (4) Let $P \in \mathbb{R}^{n \times n}$. If $P^2 = P$ and $P \neq I$, show that det(P) = 0.
- (5) Let $H \in \mathbb{R}^{n \times n}$. If $H^2 = I$, then det(H) = 1 or -1. Find an $H \neq \pm I$ such that det(H) = -1.

(*Hint*: a Householder matrix, $H = I - 2\mathbf{u}\mathbf{u}^t$, where $\|\mathbf{u}\|_2 = 1$)

- (4) Let $P \in \mathbb{R}^{n \times n}$. If $P^2 = P$ and $P \neq I$, show that det(P) = 0.
- (**Proof**) By contradiction, suppose that $det(P) \neq 0$, then P is invertible, then $P^2 = P \rightarrow P(P-I) = O$ implies that P-I = O, which contradicts $P \neq I$.
- (5) Let $H \in \mathbb{R}^{n \times n}$. If $H^2 = I$, then det(H) = 1 or -1. Find an $H \neq \pm I$ such that det(H) = -1.

(*Hint*: a Householder matrix, $H = I - 2\mathbf{u}\mathbf{u}^t$, where $\|\mathbf{u}\|_2 = 1$)

(Ans) Let
$$\mathbf{u} = [1/2, \sqrt{3}/2]^t$$
, then $\|\mathbf{u}\|_2 = 1$, and then $H = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$.