H2: Determinants

(1) $A=\left[\begin{array}{ccc}2 & 5 & 1 \\ 1 & 0 & -1 \\ 4 & 2 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], C=\left[\begin{array}{lll}4 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 3\end{array}\right]$
(a) Show that $\operatorname{det}(A)=-14, \quad \operatorname{det}(B)=0, \quad \operatorname{det}(C)=1$
(b) Find the adjoints of matrices A, B, C, respectively.
(c) Use Cramer's rule to find A^{-1} and C^{-1}, respectively.
(2) Let $D=\left[\begin{array}{cccc}2 & 4 & 3 & 1 \\ 0 & 5 & 6 & 3 \\ -1 & 2 & 4 & -2 \\ 7 & 0 & 1 & 3\end{array}\right], E=\left[\begin{array}{cccc}1 & 1 & 2 & 3 \\ 2 & 3 & 5 & 6 \\ 3 & 3 & 7 & 9 \\ 3 & 5 & 6 & 10\end{array}\right], F=\left[\begin{array}{ccccc}1 & 6 & 11 & 16 & 21 \\ 2 & 7 & 12 & 17 & 22 \\ 3 & 8 & 13 & 18 & 23 \\ 4 & 9 & 14 & 19 & 24 \\ 5 & 10 & 15 & 20 & 25\end{array}\right]$
(a) Show that $\operatorname{det}(D)=340, \quad \operatorname{det}(E)=1, \quad \operatorname{det}(F)=0$
(3) Let $A \in R^{n \times n}$, if there exists an $\mathbf{x} \neq \mathbf{0}$ in R^{n} such that $A \mathbf{x}=\lambda \mathbf{x} . \lambda$ is called an eigenvalue. For a small $n \leq 3$, we can directly compute the eigenvalues of a matrix A by solving the n-degree characteristic polynomial equation $\operatorname{det}(\lambda I-A)$.
(a) Give the characteristic polynomial equation of matrices A, B, and C given in problem (1).
(b) Solve the polynomial equations in part (a).
(4) Let $P \in R^{n \times n}$. If $P^{2}=P$ and $P \neq I$, show that $\operatorname{det}(P)=0$.
(5) Let $H \in R^{n \times n}$. If $H^{2}=I$, then $\operatorname{det}(H)=1$ or -1 . Find an $H \neq \pm I$ such that $\operatorname{det}(H)=-1$.
(Hint: a Householder matrix, $H=I-2 \mathbf{u u}^{t}$, where $\|\mathbf{u}\|_{2}=1$)
(4) Let $P \in R^{n \times n}$. If $P^{2}=P$ and $P \neq I$, show that $\operatorname{det}(P)=0$.
(Proof) By contradiction, suppose that $\operatorname{det}(P) \neq 0$, then P is invertible, then $P^{2}=$ $P \rightarrow P(P-I)=O$ implies that $P-I=O$, which contradicts $P \neq I$.
(5) Let $H \in R^{n \times n}$. If $H^{2}=I$, then $\operatorname{det}(H)=1$ or -1 . Find an $H \neq \pm I$ such that $\operatorname{det}(H)=-1$.
(Hint: a Householder matrix, $H=I-2 \mathbf{u u}^{t}$, where $\|\mathbf{u}\|_{2}=1$)
(Ans) Let $\mathbf{u}=[1 / 2, \sqrt{3} / 2]^{t}$, then $\} \mathbf{u} \|_{2}=1$, and then $H=\left[\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]$.

