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Definition and Examples

Let A € R™™. If 3 v # 0 such that Av = Av, X is called an eigenvalue of matrix A,
and v is called an eigenvector corresponding to (or belonging to) the eigenvalue A. Note
that v is an eigenvector implies that av is also an eigenvector for all a £ 0. We define the
Eigenspace()) as the vector space spanned by all of the eigenvectors corresponding to the
eigenvalue .

Ax =X x = (M —-A)x=0,x#0 = det(\] —A)=P(\) =0.

Ezxamples:
[2 0] (1] [0
1. A= ,)\1:2,111: ,)\2:17112:
| 0 1 ] | 0 ] | 1
[ 2 ] (1] [ —1]
2. A= ,)\1:2,111: ,)\2:1,112:
| 0 1 ] | 0 ] | 1]
[ 3 ] 1] [ —1
3A: ,)\1:4,111: ,)\2:2,112:
|1 3 ] | 1] | 1]
[0 —1 ] 1 J
4. A= ,)\1:].,111: 7>\2:_j7u2: 7j:\/_1‘
I | J 1
(30 ] N 0
5 B = ,then)\1:3,u1: ,)\2——1,112—
2
8 —1 | - 1
B 3 1 1 L
- V2 V2
6. C = , then 7y =4, v; = DTy =2, Vg =
-1 3 =1 L
L V2 V2

Note that ||u;]|2 = 1 and ||v;||2 = 1 for i = 1,2. Denote U = [uy, ug] and V' = [vy, vy|, then

3 0 40
U™'BU = , ViV =
0 -1 0 2

Note that Vi =V~ but Ut # UL
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Z;‘Lzl )\] — Z?:l (077 a/n/d H?Zl )\] = det(A)
Let A € R™", then P(\) = det(A — A) is called the characteristic polynomial of matrix
A.

O Fundamental Theorem of Algebra

A real polynomial P(A\) = A"+a, 1 A" "'+ - +ag of degree n has nroots {\;, Ag, -++, Ay}
such that

PO) == AD)A = A2) (A= Ap) = A" — (; /\i> A (=1)" (H )\Z->

i=1

e Y N = YM,ay; = tr(A) (calledthetraceof A)
o [TM N\ = det(A)

O Gershgorin’s Disk Theorem
Every eigenvalue of matrix A € R™" lies in at least one of the following disks

D ={z | |z — ayl §Z|aij‘}, 1<1<n
J#i

Example: B= |0 4 1 |, A,X,A3€E DyUDyU D3, where

Dy={z| |z=3[ <2}, Do={z| |z =4[ <1}, Dy ={z| [z = 5[ <4}.
Note that A\, = 6.5616, A, = 3.0000, A3 = 2.4383.

O A matrix is said to be diagonally dominant if |a;| > 3,2 |ai;|, V1 <@ <n.

< A diagonally dominant matrix is invertible.
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Theorem: Let A, P € R™", with P nonsingular, then X\ is an eigenvalue of A with
eigenvector x iff \ is an eigenvalue of P~'AP with eigenvector P~!x.

(Proof) Let x be an eigenvector of A corresponding to the eigenvalue A, that is, Ax = Ax.
Then, we have

(P'AP)(P'x) = P'A(PP H)x = P 'Ax = P'(\x) = A(P'x)

Thus, P~'x is an eigenvector corresponding to the eigenvalue \ of the matrix P~tAP
(according to the definition).

On the other hand,
(P'AP)(P'x) = A(P'x)

implies that Ax = Ax could be achieved based on simple matrix operations.
Theorem: Let A € R™" and let A be an eigenvalue of A with eigenvector x. Then
(a) a is an eigenvalue of matrix A with eigenvector x
(b) A — u is an eigenvalue of matrix A — pl with eigenvector x

(c) If A is nonsingular, then A # 0 and A™! is an eigenvalue of A~! with eigenvector
X

Let x be an eigenvector of A corresponding to the eigenvalue A, that is, Ax = Ax. Then
Proof of (a) (aA)x = a(Ax) = a(Ax) = (aM)x.
Proof of (b) (A — pul)x = Ax — ux = Ax — ux = (A — p)x.

Proof of (c) If A is nonsingular, none of its eigenvalues is zero, otherwise, Ax = Ax =
0-x =0 and x = A'0 = 0 which implies that x = 0 that contradicts that x is
an eigenvector (of A). Then, Ax = Ax implies that %X = A~'x. Therefore, + is an

)
eigenvalue of matrix A~! with eigenvector x.

Definition: A matrix A is similar to B, denote by A ~ B, iff there exists an invertible
matrix U such that U ' AU = B. Furthermore, a matrix A is orthogonally similar to
B, iff there exists an orthogonal matrix @ such that Q*AQ = B.

Theorem: Two similar matrices have the same eigenvalues, i.e., A ~ B = A(A) = A(B).

Proof Since A ~ B, we have B = U AU for some U, then
IMN-B| = U A\NU-UAU| = [ U '\ -A)U| = |U - |M—A-|U| = |U|" M =A|-|U|
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Diagonalization of Matrices

Theorem: Suppose A € R™ ™ has n linearly independent eigenvectors vy, vo, ..., Vv,

corresponding to eigenvalues A1, Ay, ..., A,. Let V. = [vy, vo, ..., v,], then
VYAV = diag[Ai, Aoy -, Al

& If A € R has n distinct eigenvalues, then their corresponding eigenvectors are linearly
independent. Thus, any matrix with distinct eigenvalues can be diagonalized.

<& Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Nondiagonalizable Matrices

210 1 00
A=10 2 1|, B= 1 20
00 2 -3 5 2
Diagonalizable Matrices
00 -2
11 20 0 -1
C= , D= , E=112 1|, K=
11 0 2 1 0
10 3

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

O U'AU = A or A = UAU' = Y1, wul, where U is an orthogonal matrix, and
A= diag[/\l, )\2, Ty, >\n]
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Similarity transformation and triangularization

Schur’s Theorem: V A € R™", 3 an orthogonal matrix U such that U' AU = T is upper-
A. The eigenvlues must be shared by the similarity matrix 7" and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n — 1, and consider A € R™" with Ax = Ax and ||x||s = 1, then 3 a Houscholder

matrix H; such that Hix = fe;, e.g., = —||x||2, hence
HlAerl = HlA(Hflel) = HlA(ﬁ_1X> = Hlﬁ_lAX = ﬁ_l)\(Hl}() = /6_1>\(681) = )\81
Thus,
A | *
HAH = | ——— | ———
O | 4D

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogo-
nally diagonalized.

O U'AU = A or A = UAU' = Y \yuyul, where U is an orthogonal matrix, and A =
diag[A1, Ao, <+, Al

Definition: A symmetric matrix A € R™*" is nonnegative definite if x!Ax > 0V x € R",

x #£ 0.

Definition: A symmetric matrix A € R™" is positive definite if x'Ax > 0V x € R",

x #£ 0.

Singular Value Decomposition Theorem: Each matrix A € R™*" can be decom-
posed as A = UXV?, where both U € R™™ and V € R™" are orthogonal. Moreover,
Y € R = diagloy,09,...,040,...,0] is essentially diagonal with the singular
values satisfying o9 > 09 > ... > g > 0.

O A= UZVt = i-le O'Z'HZ‘V;?

Ezample:



A Jacobi Transform (Givens Rotation)

1 0
0 0
0 c s 0
J(i, k;0) =
0 -5 - c 0
0 0
I 0 0 I

Jpp =11 h #£1 or h # k, where i < k
Jii = Ju = ¢ = cos
Jpi = —s = —sinb, J;, = s =sinf
Let x,y € R", then y = J(i, k; §)x implies that
Y; = CT; + STk

Y = —ST; + cxy

x4 Ty

CcC = L S =
2.2 2. 2
\/xi"‘zk \/zi"'xk

1
2 cos 1/V5

<ol Ll
_4_

, then J(2,4;0)x =

7
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Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such
that
JeJ o BB TAS Ty T 1 Jg = A

where each .J; is orthogonal, so is QQ = J1Js- - - Jg_1Jk.
Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one

of the off-diagonal matrix elements. Let A = (a;;) be symmetric, then

B = Jp,q,0)AJ(p,q,0), where

byp = carp — sayg for r#p, r#q
by = sa,p +carq for r#p, r#q
bpp = CPayy + s2ag, — 2scay,

byg = S2p, + CPagq + 25ca,,

bpg = (¢* = 8%)apg + sc(apy — aqq)

To set b,, = 0, we choose ¢, s such that

2 _ 2 _
a = cot(26) = ¢ 2808 = aqqza Oop (1)
rq

For computational convenience, let ¢t = 2, then t* + 2at — 1 = 0 whose smaller root (in

absolute sense) can be computed by
sgn(o 1 s
gn(e) and ¢ = ———, s=ct, T=

t:—7 )
va? 41+ |al V14t l+c

(2)

Remark

bpp = Qpp — tapg
bgg = qq + tay,
brp = Arp — 8(Arg + Tayrp)

brg = Qrg + S(arp — Trq)



Algorithm of Jacobi Transforms to Diagonalize A

AO A
for k =0,1,---, until convergence

Let |a®)| = Mazi<;{|al}|}

Compute

(k) _ (k)

oy, = %, solve cot(26y) = ay, for 0.

Apgq

t = sgn(o)
Va2+1+|al
_ _ 1 —
C= i 85T ct
_ _s
T= The

ARHD o AR T where J, = J(p, q, 0k)

endfor

79



Convergence of Jacobi Algorithm to Diagonalize A

Proof:

Since [alt)] > |a§f)| for i # j, p # q, then
a2 > of f(A®)) /2N, where N = @, and
2
of fF(AR)) = D (al(-?)) , the sum of square off-diagonal elements of A*)
Furthermore,
2 2
of F(A®D) = of f(A®) =2 (al®))" +2 (afttV)
_ Y _ o (BN o (k+1) _
= of f(AW) -2 (apq) , since ay ) =0

< of f(AW) (1 - %) ; Since|a§,’;)|2 > of f(A® /2N

Thus .
1
of (AR < (“N) of f(AD) = 0 as k — oo

Example:

4 2 0 c s O

A=12 3 1|, J(1,20)=| —s ¢ O

01 2 0 01
Then

4c® —4es + 352 2 4 cs — 257 —s
AW = JY1,2;0)AJ(1,2,0) = | 22+ cs — 257 3¢ +4des +4s7 ¢

-3 c 1

Note that of f(AM) =2 < 10 = of f(AQ) = of f(A)

80
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Example for Convergence of Jacobi Algorithm

[1.0000 0.5000 0.2500 0.1250 | [ 1.5000 0.0000 0.5303 0.2652
0.5000 1.0000 0.5000 0.2500 0.0000 0.5000 0.1768 0.0884
A0) — . A =
0.2500 0.5000 1.0000 0.5000 0.5303 0.1768 1.0000 0.5000
| 0.1250 0.2500 0.5000 1.0000 | | 0.2652 0.0884 0.5000 1.0000 |
[1.8363 0.0947 0.0000 0.4917 ] [2.0636 0.1230 0.1176 0.0000 |
0.0947 0.5000 0.1493 0.0884 0.1230 0.5000 0.1493 0.0405
AR — : AB) —
0.0000 0.1493 0.6637 0.2803 0.1176 0.1493 0.6637 0.2544
| 0.4917 0.0884 0.2803 1.0000 | | 0.0000 0.0405 0.2544 0.7727 |
[ 2.0636 0.1230 0.0915 0.0739 ] [2.0636 0.1018 0.0915 0.1012 ]
0.1230 0.5000 0.0906 0.1254 0.1018 0.4691 0.0880 0.0000
AW — : AG) —
0.0915 0.0906 0.4580 0.0000 0.0915 0.0880 0.4580 0.0217
| 0.0739 0.1254 0.0000 0.9783 | | 01012 0.0000 0.0217 1.0092 |
[ 2.0701  0.0000 0.0969 0.1010 ] [2.0856  0.0000 0.0000 0.0000
0.0000 0.4627 0.0820 —0.0064 0.0000 0.5394 0.0000 —0.0000
A6 — . AW =
0.0969 0.0820 0.4580 0.0217 0.0000 0.0000 0.3750  0.0000
| 0.1010 —0.0064 0.0217 1.0092 | | 0.0000 —0.0000 0.0000 1.0000
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Cholesky Algorithm

O Theorem: Every positive definitive matrix A can be decomposed as A = LL!, where L
is lower — A.

O Algorithm: A € R"", A= LL' A is positive definite and L is lower — A.

forj=0,1,---,n—1

. 1/2
Ljj — |A;—Ziso 3]
fori=75+1,742,---,n—1

Ly « [Ay — $iZ6LuL /Ly

endfor
endfor
4 =2 2 0 2 —1
O - - - LlLtl
-2 5 -1 2 0 2
9 3 -3 3 00 3 1 -1
A= 3 17 3 = 1 40 0 4 1 :LQL';
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Power of A Matrix and Its Eigenvalues

Theorem: Let \j, Ao, -+, \, be eigenvalues of A € R™™. Then A}, A5 -+ \F are eigen-
values of A¥ € R™™ with the same corresponding eigenvectors of A. That is,

Suppose that the matrix A € R™™" has n linearly independent eigenvectors vy, vy,---, v,
corresponding to eigenvalues Ai, Ao, - -+, \,. Then any x € R" can be written as
X =CV]+CVy+- -4,V

Then
Afx = )\’fclvl + )\SCQW + -+ )\fjcnvn

In particular, if [A\;| > || for 2 < j < n and ¢; # 0, then A*x will tend to lie in the
direction vy when k is large enough.
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Power Method for Computing the Largest Eigenvalues

Suppose that the matrix A € R™*" is diagonalizable and that U=t AU = diag(A1, A2, - -+, \n)
with U = [vy, va, -+, v,] and |[A1] > |Ag| > [A3| > --- > |A\,]. Given u® € R", then
power method produces a sequence of vectors ul®) as follows.
fork=1,2,---
z®) — Au*k-D
r#) = 2k) = ||zF)|| ., for some 1 < m < n,
u® = z®) /p(k)
endfor

A1 must be real since the complex eigenvalues must appear in a "relatively conjugate pair”.

= y V1= = y V2= =
1 2 A =1 V2l V2 1

1.0

1
0) — (5) —
Let u l 0 ], then u l 0.9918

1 , and r® = 2.9756.



QR Iterations for Computing Eigenvalues

b
% Script File: shiftQR.m
% Solving Eigenvalues by shift-QR factorization
b
Nrun=15;
fin=fopen(’dataMatrix.txt’);
fgetL(fin); % read off the header line
n=fscanf(fin,’%d’,1);
A=fscanf (fin,’%f’,[n nl);
A=A’
SaveA=A;
for k=1:Nrun,
s=A(n,n);
A=A-s*xeye(n);
[Q Rl=qr(A);
A=RxQ+s*eye(n) ;
end
eig(SaveA)
b
% dataMatrix.txt
b
Matrices for computing eigenvalues by QR factorization or shift-QR
5

.0 0.5 0.26 0.1256 0.0625
.5 1.0 0.5 0.25 0.125
.25 0.5 1.0 0.5 0.25
.125 0.25 0.5 1.0 0.5
.0625 0.125 0.26 0.5 1.0

for shift-QR studies
.9766 0.3945 0.4198 1.1189
.3945 2.7328 -0.3097 0.1129
.4198 -0.3097 2.5675 0.6079
.1159 0.1129 0.6097 1.7231

P O ON P OO O O -
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Norms of Vectors and Matrices

Definition: A vector norm on R" is a function
T R — R'={zx>0/z€R}
that satisfies
(1) 7(x) >0 Vx#0, 7(0) =0
(2) 7(ex) =|cr(x) Vce R, x€ R"

B) T(x+y)<7(x)+7(y) Vx,y € R

Hélder norm (p-norm) ||x||, = (X7, |xi\p)1/p for p>1.

(p=1) |Ix|ls = >0 |=:| (Mahattan or City-block distance)

(p=2) |x|2> = (X0, |z:)"”? (Euclidean distance)

(p=00) [|%X|loc = mazi<i<n{|z;|} (c0-norm)
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Definition: A matrix norm on R"™*" is a function
T R™" — RY={z>0|z€ R}
that satisfies
(1) 7(A) >0 YA#£O0,7(0)=0
(2) 7(cA) =|dr(A) YV ce R, Ae R™"

(3) T(A+B)<7(A)+71(B) VA BeR™™
Consistency Property: T(AB) < t(A)T7(B) ¥ A, B

(a) 7(A) =maz{lay| | 1 <i<m, 1<j<n}

m n 1/2 . .
(b) [|A]lr = [Zizl > afj} (Frébenius norm)

Subordinate Matrix Norm: [|A|| = maxx0{|Ax|/[|x||}
(1) If A e ™", then [|Ally = mazi<jcn (XiLy |ai;])

(2) If A€ R™" then [|A]|s = mazicicm (S |a])

(3) Let A € R™™ be real symmetric, then [|A|2 = maxi<i<n|i|, where \; € A(A)
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Theorem: Let x € R" and let A = (a;;) € R™™. Define ||Al; = Supju,=1{|[Aul1}

Proof: For ||ul; =1,

n n n n n n
[Ally = Sup{[|Aull1} = D> aus] <D0D lagllug] =D Jui| D Jas]
j=li=1 j=1 =1

=1 j=1
Then
n n n
Al < Mazy<j<n{d_ lail} D lujl = Mazy<j<n{)_ |ai;|}
=1 =1

j=1

On the other hand, let Y27 | |ax| = Maz1<j<,{> 7 |a;j|} and choose u = e, which
completes the proof.

Theorem: Let A = [a;;] € R™*", and define ||A|lo = Maz |y =1{|lAuo}-

Show that ||A]lce = Mazi<i<m {Z‘aij‘}
j=1

Proof: Let Y |ak,| = Mazi<i<m {ZW\}, for any x € R™ with ||x[|oc = 1, we have

j=1 J=1
|AXlloe = Mazicic {1 Tl aijas]}
< Mazicicm {Z?:l la;;| - |£E]|} < Mari<i<m {E?:l |aij‘||x||oo}

< Mazicigm {55 |} = S5y lax;|

In particular, if we pick up y € R" such that y; = sign(ag;), V1 < j < n, then
[¥lloo = 1, and [|Ay|leo = X% |ax;|, which completes the proof.
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Theorem: Let A = [a;;] € R™*", and define ||A|ls = Maxx,=1{||Ax||2}. Show that

|Alle = \/p(AtA) = \/maximum eigenvalue of A'A (spectral radius)

(Proof) Let Aq, Ay, ---, A, be eigenvalues and their corresponding unit eigenvectors
u;, up, ---, u, of matrix A'A, that is,

(A"A)w; = \w; and |wlla =1 V1<i<n.
Since uy, up, ---, u, must be an orthonormal basis based on spectrum decomposition

n
theorem, for any x € R", we have x = ) ¢;u;. Then
=1

1All: = Mawjxo=1 {[|Ax]|2}

= \/Max||x||2:1{||AXH§}

= \/Maiﬁuxnzzl{xtAtAX}

i=1

= J Mazjxy—1]d_ Nic]|

— [ Mazigedin)
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A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside
Taiwan move out in each year. Let y, and z, be the population at the end of the k — th
year, outside Taiwan and inside Taiwan, respectively. Then we have

Yk _09 0.2 Yk—1

2k _01 0.8 Zl—1
n 09 0271°T v (2 1rt o 1 177w
% 01 08] | =] [t —1]lo ©nr]l1 —2]]| 2

O A Markov matrix A is nonnegative with each colume adding to 1.
(a) A1 =1 is an eigenvalue with a nonnegative eigenvector x;.
(b) The other eigenvalues satisfy |\;| < 1.

(c) If any power of A has all positive entries, and the other |\;| < 1. Then A*u,
approaches the steady state of u,, which is a multiple of x; as long as the projection
of ug in x; is not zero.

<& Check Perron-Frobenius theorem in Strang’s book.
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e and Differential Equations

.‘@A:]+%+A2_!2+...+A_’T+...

m!

& L=y = ut)=eMu(0)

-2 1

& L= _Au = u = u(t) =e “u(0)
1 =2

& A = UAU! for an orthogonal matrix U, then

e = UerU=Udiag[eM, e, ... et U

& Solve 2" — 32" + 22’ = 0.

Let y =2/, 2z = ¢ = 2", and let u = [z,y, z]*. The problem is reduced to solving

0 1 0
u = Au = 0 0 1 {u
0 -2 3

Then

1 e 0 0 0 —2.2913 2.2913

Sl

0 ¢ 0|0 34641 —1.7321 |u(0)

0 0 0 1 1 —1.5000 0.5000

o
—~
~
~
|
[
s
~—~
o
~
|
= N
[ [ [
S
o

B
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Problems Solved by Matlab

Let A, B, H, x, y, u, b be matrices and vectors defined below, and H = I — 2uu’

1/2
1/2
1/2 |
1/2

1 -3 1 0
0O(,B=|1 -3 0], u=
2

1
-2 7 0 0 3

o

|

[\
vN

|

_ o e e

«

|

. Let A=LU=QR, find L, U; Q, R.

Find determinants and inverses of matrices A, B, and H.

Solve Ax = b, how to find the number of floating-point operations are required?
Find the ranks of matrices A, B, and H.

Find the characteristic polynomials of matrices A and B.

Find 1-norm, 2-norm, and oo-norm of matrices A, B, and H.

Find the eigenvalues/eigenvectors of matrices A and B.

Find matrices U and V such that U"*AU and V!BV are diagonal matrices.
Find the singular values and singular vectors of matrices A and B.

. Randomly generate a 4x4 matrix C with 0 < C(7,j) < 9.



