Principal Component Analysis

♣ Motivation

Principal Component Analysis (PCA) is a multivariate statistical technique that is often useful in reducing dimensionality of a collection of unstructured random variables for analysis and interpretation.

♣ Problem Statement

Let **X** be a *m*-dimensional random vector with covariance matrix C. The problem is to *consecutively* find the unit vectors $\mathbf{a}_1, \ \mathbf{a}_2, \ \ldots, \ \mathbf{a}_m$ such that $y_i = \mathbf{x}^t \mathbf{a}_i$ with $Y_i = \mathbf{X}^t \mathbf{a}_i$ satisfies

- 1. $var(Y_1)$ is the maximum.
- 2. $var(Y_2)$ is the maximum subject to $cov(Y_2, Y_1)=0$.
- 3. $\operatorname{var}(Y_k)$ is the maximum subject to $\operatorname{cov}(Y_k, Y_i) = 0$, where $k = 3, 4, \dots, m$ and k > i.
- Y_i is called the *i-th* principal component Feature extraction by PCA is called PCP

\heartsuit The Solution

Let $(\lambda_i, \mathbf{u}_i)$ be the pairs of eigenvalues and eigenvectors of C such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$ and $\|\mathbf{u}_i\|_2 = 1, \ \forall \ 1 \leq i \leq m$. Then $\mathbf{a}_i = \mathbf{u}_i$ and $\operatorname{var}(Y_i) = \lambda_i$ for $1 \leq i \leq m$.

Methodology of Practical PCA

Given observations $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^m$.

- 1. Compute the mean vector $\mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$
- 2. Compute the *covariance matrix* $C = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \mathbf{m}) (\mathbf{x}_i \mathbf{m})^t$ by MLE
- 3. Compute the eigenvalue/eigenvector pairs $(\lambda_j, \mathbf{u}_j)$ of C, $1 \le j \le m$, where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$.
- 4. Compute the first d principal components $y_i^{(j)} = \mathbf{x}_i^t \mathbf{u}_j$, for each observation \mathbf{x}_i , $1 \le i \le n$, along the direction \mathbf{u}_j , $j = 1, 2, \dots, d$.

Figure 1: An illustration of PCP on 10 2d Points.

Images of Characters 8,O,X,3

Principal Component Projection of 8OX Data

 \Box The 8OX data set is derived from Munson's hand printed Fortran character set. Included are 15 patterns from each of the characters '8', 'O', 'X'. Each pattern consists of 8 feature measuremnts.

Figure 2: The (1st,2nd) and (3rd,4th) PCP of 8OX Data

Principal Component Projection of IMOX and iris Data

□ The IMOX data set contains 8 feature measurements on each character of 'I', 'M', 'O', 'X'. It contains 192 patterns, 48 in each character. This data set is also derived from Munson's database.

 \Box The iris data set contains four feature measurements of three species of iris flowers: setosa, virginica, versicolor. It contains 50 patterns from each species on each of four features: sepal length, sepal width, petal length, petal width. This data set has been frequently used for the study of clustering and classification.

Figure 3: PCP of (a) IMOX and (b) iris Data Sets

Generate Two Sets of Points in Elongated Regions

```
% Script File: pcaNo.m
% Generate a set of long shaped data in two categories and
\mbox{\%} show that PCA does ot pick up the desired direction
n=20; d=2; r=5;
X1=random('Uniform',-r,r,n,1);
Y1=random('Uniform',0,1,n,1);
X2=random('Uniform',-r,r,n,1);
Y2=random('Uniform',-1,0,n,1);
for i=1:21
  Xh(i)=-5.5+0.5*i;
  Yh(i)=0;
end
for i=1:n
  X(i,1)=X2(i,1);
  X(i,2)=Y2(i,1);
  X(i+n,1)=X1(i,1);
  X(i+n,2)=Y1(i,1);
end
[n,d]=size(X);
C=cov(X);
[U D] = eig(C);
L=diag(D); L', U % principal component directions
plot(X1,Y1,'b^',X2,Y2,'ro',Xh,Yh,'g-'); axis([-r, r, -2 2]); grid;
legend('The 1st principal direction is [-1.0, 0.0]');
title('An Example of PCA fails')
```

Script File: Compute the First K Principal Components

```
% Script file: PCA.m
% Find the first K Principal Components of data X (n rows, d columns)
\% X contains n pattern vectors with d features
function Y=PCA(X,K)
[n,d]=size(X);
C=cov(X);
[U D]=eig(C);
L=diag(D);
[sorted index]=sort(L,'descend');
Xproj=zeros(d,K);
                   % initiate a projection matrix
for j=1:K
   Xproj(:,j)=U(:,index(j));
end
Y=X*Xproj;
                         % first K principal components
```

An Example that PCA Fails

Figure 4: An Example that PCA Fails

.

Generate Two Sets of Points from Gaussian Distributions

```
% Script File: pcaYes.m
% Generate a set of elliptical-shaped data in two categories and
% show that PCA really picks up the desired direction
n=20; d=2;
X1=random('Normal',2.0,1,n,1);
Y1=random('Normal',2.0,1,n,1);
X2=random('Normal',-2.0,1,n,1);
Y2=random('Normal',-2.0,1,n,1);
Xh=-4:0.5:4;
Yh=-4:0.5:4;
for i=1:n
  X(i,1)=X2(i,1);
  X(i,2)=Y2(i,1);
  X(i+n,1)=X1(i,1);
  X(i+n,2)=Y1(i,1);
end
[n,d]=size(X);
C=cov(X);
[U D] = eig(C);
L=diag(D); L', U % principal component directions
plot(X1,Y1,'b^',X2,Y2,'ro',Xh,Yh,'g-'); axis([-4,4, -4,4]); grid;
legend('The 1st principal direction is [1.0, 1.0]');
title('An Example of PCA works')
```

An Example that PCA Works

Figure 5: An Example that PCA Works

Fundamentals of Linear Discriminant Analysis

Given the training patterns \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_n from K categories, where $n_1 + n_2 + \ldots + n_K = n$. Let the between-class scatter matrix B, the within-class scatter matrix W, and the total scatter matrix T be defined below.

$$B = \sum_{i=1}^{K} n_i (\mathbf{u}_i - \mathbf{u}) (\mathbf{u}_i - \mathbf{u})^t, \text{ where } \mathbf{u}_i \text{ is the mean of ith category, } \mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x_i},$$

$$W = \sum_{i=1}^{K} \sum_{\mathbf{x} \in \omega_i} (\mathbf{x} - \mathbf{u}_i) (\mathbf{x} - \mathbf{u}_i)^t.$$

$$T = \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{u})(\mathbf{x}_i - \mathbf{u})^t.$$

Show that B + W = T.

Linear discriminant analysis for a dichotomous problem attempts to find an optimal direction \mathbf{w} for projection which maximizes a Fisher's discriminant ratio

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{n_1 s_1^2 + n_2 s_2^2} = \frac{n}{n_1 n_2} \times \frac{\mathbf{w}^t B \mathbf{w}}{\mathbf{w}^t W \mathbf{w}} = \frac{n}{n_1 n_2} \times J_2(\mathbf{w})$$
(1)

where

$$y_i = \mathbf{w}^t \mathbf{x}_i, \quad 1 \le i \le n_1, \quad y_j = \mathbf{w}^t \mathbf{x}_j, \quad n_1 < j \le n, \quad n_1 + n_2 = n$$

$$m_k = \mathbf{w}^t \mathbf{u}_k, \quad k = 1, 2$$

$$s_1^2 = \frac{1}{n_1} \sum_{i=1}^{n_1} (y_i - m_1)^2$$

$$s_2^2 = \frac{1}{n_2} \sum_{j=1+n_1}^{n} (y_j - m_2)^2$$

Let $n = n_1 n_2$, the problem could be reduced to solving the generalized eigenvalue problem of

$$B\mathbf{w} = \lambda W\mathbf{w}, \text{ where } \lambda = J_2(\mathbf{w}).$$

Discriminant Analysis

The objective of this method is to find the *optimal* set of discriminant vectors in order to separate the predefined classes of objects or events. The material is based on the paper [Duchene and Leclercq, pp.978~983, IEEE Trans. PAMI 1988]

Let the between-class scatter matrix B, the within-class scatter matrix W, and the total scatter matrix T be defined below.

$$B = \sum_{i=1}^{K} n_i (\mathbf{u}_i - \mathbf{u}) (\mathbf{u}_i - \mathbf{u})^t,$$

where

 \mathbf{u}_i is the mean of ith category, $\mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x_i}$ is the sample mean

$$W = \sum_{i=1}^{K} \sum_{\mathbf{x} \in \omega_i} (\mathbf{x} - \mathbf{u}_i) (\mathbf{x} - \mathbf{u}_i)^t$$

$$T = \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{u})(\mathbf{x}_i - \mathbf{u})^t$$
, where $T = B + W$

Define the criterion

$$C_1 = \frac{\mathbf{v}^t B \mathbf{v}}{\mathbf{v}^t T \mathbf{v}}, \qquad C_2 = \frac{\mathbf{v}^t B \mathbf{v}}{\mathbf{v}^t W \mathbf{v}}$$

The classical discriminant analysis finds an optimal set of discriminant vectors by the following steps.

- (1) Look for a unit vector \mathbf{u}_1 which maximizes C_2 , where \mathbf{u}_1 could be the eigenvector corresponding to the largest eigenvalue of $W^{-1}B$.
- (2) Look for a unit vector \mathbf{u}_2 which maximizes C_2 subject to $\mathbf{u}_2^t W \mathbf{u}_1 = 0$.
- (3) Look for a unit vector \mathbf{u}_k which maximizes C_2 subject to $\mathbf{u}_k^t W \mathbf{u}_j = 0$ for $k \geq 3$, $1 \leq j < k$.
- $\{\mathbf{u}_j\}$ is an optimal set of vectors which best discriminates the patterns. Note that \mathbf{u}_j may not be orthogonal vectors. Duchene and Leclercq suggest that $\mathbf{u}_k^t \mathbf{u}_j = 0$ and $\mathbf{u}_k^t W \mathbf{u}_k = 1$ be used for step (3) and showed by experiments that their proposed method improved the traditional one.

A Comparison of LDA and PCA on 80X Data

Figure 6: A Comparison of LDA and PCA on 8OX Data

Matlab Codes for Projection Based on LDA

```
% lda80X.m - Linear Discriminant Projection for data80X.txt
fin=fopen('data80X.txt');
         n=45;
                                      % nf features, n patterns
nf=8;
L(1)=15; L(2)=30; L(3)=45;
                                      % L(3)=n
fgetl(fin); fgetl(fin); fgetl(fin);  % skip 3 header lines
A=fscanf(fin,'%f',[1+nf n]); A=A'; % read input data
d=8; nk=15; X=A(:,1:d);
% (a) - Covariance Matrix T, [n d]=size(X); n=45, d=8
X1=X(1:L(1),:); X2=X(1+L(1):L(2),:); X3=X(1+L(2):L(3),:);
m1=mean(X1);
               m2=mean(X2);
                                m3=mean(X3);
mu=mean(X);
                T=cov(X);
W1=cov(X1);
                W2=cov(X2); W3=cov(X3);
W=(nk-1)*(W1+W2+W3);
B=nk*((m1-mu)'*(m1-mu)+(m2-mu)'*(m2-mu)+(m3-mu)'*(m3-mu));
s=0.0001;
C=(inv(W+s*eye(d)))*(B+eps);
% (b) - Compute Eigenvalues of W^{-1}B
[U D] = eig(C);
Lambda=diag(D);
[Cat index] = sort(Lambda, 'descend');
% (c) - Compute Percentage of Variance Retained
R(1)=Cat(1);
for i=2:d
  R(i)=R(i-1)+Cat(i);
end
S=R(d);
for i=1:d
  R(i)=R(i)/S*100;
end
format short;
```

```
L', R
%
\% (d) - LDA for 80X data set
K=2;
Xproj=zeros(K,d);
                                      % initiate a projection matrix
for i=1:K
   Xproj(i,:)=U(:,index(i))';
end
Y=(Xproj*X')';
                                      % first K discriminant components
X1=Y(1:L(1),1);
                 Y1=Y(1:L(1),2);
X2=Y(1+L(1):L(2),1); Y2=Y(1+L(1):L(2),2);
X3=Y(1+L(2):L(3),1); Y3=Y(1+L(2):L(3),2);
plot(X1,Y1,'d',X2,Y2,'0',X3,Y3,'X','markersize',10);
legend(' 8',' 0',' X')
axis([-16, -2, -18, 2]); grid;
title('First Two Linear Discriminant Projection for data80X')
```

A Comparison of LDA and PCA on IMOX Data

Figure 7: A Comparison of LDA and PCA on IMOX Data

.

A Comparison of LDA and PCA on iris Data

Figure 8: A Comparison of LDA and PCA on iris Data

.

Some Exercises for Linear Discriminant Analysis

- (1) Let $p(\mathbf{x}|\omega_i)$ be arbitrary densities with mean vectors \mathbf{u}_i and covariance matrices C_i (not necessarily normal) for i = 1, 2. Let $y = \mathbf{w}^t \mathbf{x}$ be a projection, and let the induced densities $p(y|\omega_i)$ have means and variances, μ_i and σ_i^2 , respectively.
 - (a) Show that the criterion function

$$J_1(\mathbf{w}) = (\mu_1 - \mu_2)^2 / (\sigma_1^2 + \sigma_2^2)$$

is maximized by $\mathbf{w} = (C_1 + C_2)^{-1}(\mathbf{u}_1 - \mathbf{u}_2)$

Hint: $E(\mathbf{w}^t \mathbf{X} | \omega_i) = \mu_i$ and $Var(\mathbf{w}^t \mathbf{X} | \omega_i) = \sigma_i^2$ for i = 1, 2.

(b) If the prior probability for ω_i is denoted by $p_i = P(\omega_i)$, show that

$$J_2(\mathbf{w}) = (\mu_1 - \mu_2)^2 / (p_1 \sigma_1^2 + p_2 \sigma_2^2)$$

is maximized by $\mathbf{w} = [p_1C_1 + p_2C_2]^{-1}(\mathbf{u}_1 - \mathbf{u}_2)$

(c) The Fisher linear discriminant function employs that a linear function $\mathbf{w}^t \mathbf{x}$ for which the criterion function J is maximized, where

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

where $y_j = \mathbf{x}_j^t \mathbf{w}$ if $\mathbf{x}_j \in \omega_1$ and $z_k = \mathbf{x}_k^t \mathbf{w}$ if $\mathbf{x}_k \in \omega_2$, and

$$m_1 = \frac{1}{n_1} \sum_{j=1}^{n_1} y_j, \quad m_2 = \frac{1}{n_2} \sum_{k=1}^{n_2} z_k, \quad s_1^2 = \frac{1}{n_1} \sum_{j=1}^{n_1} (y_j - m_1)^2, \quad s_2^2 = \frac{1}{n_2} \sum_{k=1}^{n_2} (z_k - m_2)^2,$$

- (d) To which of these criterion functions J_1 or J_2 is the $J(\mathbf{w})$ more closely related?
- (2) Let $A \in R^{n \times n}$ be a positive definite matrix and $\mathbf{x}, \mathbf{b} \in R^n$, $\beta \in R$. Find the criterion such that $g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^t A\mathbf{x} \mathbf{b}^t \mathbf{x} \beta$ is minimized. What is the minimum value of $g(\mathbf{x}), \mathbf{x} \in R^n$?