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Principal Component Analysis

♣ Motivation
Principal Component Analysis (PCA) is a multivariate statistical technique that is

often useful in reducing dimensionality of a collection of unstructured random variables for
analysis and interpretation.

♣ Problem Statement
Let X be a m-dimensional random vector with covariance matrix C. The problem is

to consecutively find the unit vectors a1, a2, . . . , am such that yi = xtai with Yi = Xtai

satisfies

1. var(Y1) is the maximum.

2. var(Y2) is the maximum subject to cov(Y2, Y1)=0.

3. var(Yk) is the maximum subject to cov(Yk, Yi)=0, where k = 3, 4, · · · , m and k > i.

• Yi is called the i-th principal component • Feature extraction by PCA is called PCP

♥ The Solution
Let (λi,ui) be the pairs of eigenvalues and eigenvectors of C such that λ1 ≥ λ2 ≥ . . . ≥

λm and ‖ui‖2 = 1, ∀ 1 ≤ i ≤ m. Then ai = ui and var(Yi)=λi for 1 ≤ i ≤ m.
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Methodology of Practical PCA

Given observations x1,x2, . . . ,xn ∈ Rm.

1. Compute the mean vector m = 1
n

∑n
i=1 xi

2. Compute the covariance matrix C = 1
n

∑n
i=1(xi − m)(xi −m)t by MLE

3. Compute the eigenvalue/eigenvector pairs (λj ,uj) of C, 1 ≤ j ≤ m, where λ1 ≥ λ2 ≥
· · · ≥ λm.

4. Compute the first d principal components y
(j)
i = xt

iuj, for each observation xi, 1 ≤
i ≤ n, along the direction uj , j = 1, 2, · · · , d.
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Figure 1: An illustration of PCP on 10 2d Points.
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Images of Characters 8,O,X,3
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Principal Component Projection of 8OX Data

� The 8OX data set is derived from Munson’s hand printed Fortran character set. Included
are 15 patterns from each of the characters ’8’, ’O’, ’X’. Each pattern consists of 8 feature
measuremnts.
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Figure 2: The (1st,2nd) and (3rd,4th) PCP of 8OX Data
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Principal Component Projection of IMOX and iris
Data

� The IMOX data set contains 8 feature measurements on each character of ’I’, ’M’, ’O’,
’X’. It contains 192 patterns, 48 in each character. This data set is also derived from
Munson’s database.

� The iris data set contains four feature measurements of three species of iris flowers:
setosa, virginica, versicolor. It contains 50 patterns from each species on each of four
features: sepal length, sepal width, petal length, petal width. This data set has been
frequently used for the study of clustering and classification.
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.
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Generate Two Sets of Points in Elongated Regions

% Script File: pcaNo.m

% Generate a set of long shaped data in two categories and

% show that PCA does ot pick up the desired direction

%

n=20; d=2; r=5;

X1=random(’Uniform’,-r,r,n,1);

Y1=random(’Uniform’,0,1,n,1);

X2=random(’Uniform’,-r,r,n,1);

Y2=random(’Uniform’,-1,0,n,1);

for i=1:21

Xh(i)=-5.5+0.5*i;

Yh(i)=0;

end

for i=1:n

X(i,1)=X2(i,1);

X(i,2)=Y2(i,1);

X(i+n,1)=X1(i,1);

X(i+n,2)=Y1(i,1);

end

[n,d]=size(X);

C=cov(X);

[U D]=eig(C);

L=diag(D); L’, U % principal component directions

plot(X1,Y1,’b^’,X2,Y2,’ro’,Xh,Yh,’g-’); axis([-r, r, -2 2]); grid;

legend(’The 1st principal direction is [-1.0, 0.0]’);

title(’An Example of PCA fails’)
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Script File: Compute the First K Principal
Components

% Script file: PCA.m

% Find the first K Principal Components of data X (n rows, d columns)

% X contains n pattern vectors with d features

%

function Y=PCA(X,K)

[n,d]=size(X);

C=cov(X);

[U D]=eig(C);

L=diag(D);

[sorted index]=sort(L,’descend’);

Xproj=zeros(d,K); % initiate a projection matrix

for j=1:K

Xproj(:,j)=U(:,index(j));

end

Y=X*Xproj; % first K principal components
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An Example that PCA Fails
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Figure 4: An Example that PCA Fails
.
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Generate Two Sets of Points from Gaussian
Distributions

% Script File: pcaYes.m

% Generate a set of elliptical-shaped data in two categories and

% show that PCA really picks up the desired direction

%

n=20; d=2;

X1=random(’Normal’,2.0,1,n,1);

Y1=random(’Normal’,2.0,1,n,1);

X2=random(’Normal’,-2.0,1,n,1);

Y2=random(’Normal’,-2.0,1,n,1);

Xh=-4:0.5:4;

Yh=-4:0.5:4;

for i=1:n

X(i,1)=X2(i,1);

X(i,2)=Y2(i,1);

X(i+n,1)=X1(i,1);

X(i+n,2)=Y1(i,1);

end

[n,d]=size(X);

C=cov(X);

[U D]=eig(C);

L=diag(D); L’, U % principal component directions

plot(X1,Y1,’b^’,X2,Y2,’ro’,Xh,Yh,’g-’); axis([-4,4, -4,4]); grid;

legend(’The 1st principal direction is [1.0, 1.0]’);

title(’An Example of PCA works’)
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An Example that PCA Works
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Figure 5: An Example that PCA Works
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Fundamentals of Linear Discriminant Analysis

Given the training patterns x1, x2, . . . ,xn from K categories, where n1+n2+ . . .+nK = n.
Let the between-class scatter matrix B, the within-class scatter matrix W , and the total
scatter matrix T be defined below.

B =
K∑

i=1

ni(ui − u)(ui − u)t, where ui is the mean of ith category,u =
1

n

n∑

i=1

xi,

W =
K∑

i=1

∑

x∈ωi

(x − ui)(x − ui)
t.

T =
n∑

i=1

(xi − u)(xi − u)t.

Show that B + W = T .

Linear discriminant analysis for a dichotomous problem attempts to find an optimal
direction w for projection which maximizes a Fisher’s discriminant ratio

J(w) =
(m1 − m2)

2

n1s2
1 + n2s2

2

=
n

n1n2
× wtBw

wtWw
=

n

n1n2
× J2(w) (1)

where
yi = wtxi, 1 ≤ i ≤ n1, yj = wtxj, n1 < j ≤ n, n1 + n2 = n

mk = wtuk, k = 1, 2

s2
1 =

1

n1

n1∑

i=1

(yi − m1)
2

s2
2 =

1

n2

n∑

j=1+n1

(yj − m2)
2

Let n = n1n2, the problem could be reduced to solving the generalized eigenvalue
problem of

Bw = λWw, where λ = J2(w).
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Discriminant Analysis

The objective of this method is to find the optimal set of discriminant vectors in order to
separate the predefined classes of objects or events. The material is based on the paper
[Duchene and Leclercq, pp.978∼983, IEEE Trans. PAMI 1988]

Let the between-class scatter matrix B, the within-class scatter matrix W , and the total
scatter matrix T be defined below.

B =
K∑

i=1

ni(ui − u)(ui − u)t,

where

ui is the mean of ith category,u =
1

n

n∑

i=1

xi is the sample mean

W =
K∑

i=1

∑

x∈ωi

(x − ui)(x − ui)
t

T =
n∑

i=1

(xi − u)(xi − u)t, where T = B + W

Define the criterion

C1 =
vtBv

vtTv
, C2 =

vtBv

vtWv

The classical discriminant analysis finds an optimal set of discriminant vectors by the
following steps.

(1) Look for a unit vector u1 which maximizes C2, where u1 could be the eigenvector
corresponding to the largest eigenvalue of W−1B.

(2) Look for a unit vector u2 which maximizes C2 subject to ut
2Wu1 = 0.

(3) Look for a unit vector uk which maximizes C2 subject to ut
kWuj = 0 for k ≥ 3,

1 ≤ j < k.

{uj} is an optimal set of vectors which best discriminates the patterns. Note that
uj may not be orthogonal vectors. Duchene and Leclercq suggest that ut

kuj = 0 and
ut

kWuk = 1 be used for step (3) and showed by experiments that their proposed method
improved the traditional one.
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A Comparison of LDA and PCA on 8OX Data
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Figure 6: A Comparison of LDA and PCA on 8OX Data
.
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Matlab Codes for Projection Based on LDA

% lda8OX.m - Linear Discriminant Projection for data8OX.txt

%

fin=fopen(’data8OX.txt’);

nf=8; n=45; % nf features, n patterns

L(1)=15; L(2)=30; L(3)=45; % L(3)=n

fgetl(fin); fgetl(fin); fgetl(fin); % skip 3 header lines

A=fscanf(fin,’%f’,[1+nf n]); A=A’; % read input data

d=8; nk=15; X=A(:,1:d);

%

% (a) - Covariance Matrix T, [n d]=size(X); n=45, d=8

%

X1=X(1:L(1),:); X2=X(1+L(1):L(2),:); X3=X(1+L(2):L(3),:);

m1=mean(X1); m2=mean(X2); m3=mean(X3);

mu=mean(X); T=cov(X);

W1=cov(X1); W2=cov(X2); W3=cov(X3);

W=(nk-1)*(W1+W2+W3);

B=nk*((m1-mu)’*(m1-mu)+(m2-mu)’*(m2-mu)+(m3-mu)’*(m3-mu));

s=0.0001;

C=(inv(W+s*eye(d)))*(B+eps);

%

% (b) - Compute Eigenvalues of W^{-1}B

%

[U D]=eig(C);

Lambda=diag(D);

[Cat index]=sort(Lambda,’descend’);

%

% (c) - Compute Percentage of Variance Retained

%

R(1)=Cat(1);

for i=2:d

R(i)=R(i-1)+Cat(i);

end

S=R(d);

for i=1:d

R(i)=R(i)/S*100;

end

format short;
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L’, R

%

% (d) - LDA for 8OX data set

%

K=2;

Xproj=zeros(K,d); % initiate a projection matrix

for i=1:K

Xproj(i,:)=U(:,index(i))’;

end

Y=(Xproj*X’)’; % first K discriminant components

X1=Y(1:L(1),1); Y1=Y(1:L(1),2);

X2=Y(1+L(1):L(2),1); Y2=Y(1+L(1):L(2),2);

X3=Y(1+L(2):L(3),1); Y3=Y(1+L(2):L(3),2);

plot(X1,Y1,’d’,X2,Y2,’O’,X3,Y3,’X’,’markersize’,10);

legend(’ 8’,’ O’,’ X’)

axis([-16, -2, -18, 2]); grid;

title(’First Two Linear Discriminant Projection for data8OX’)
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A Comparison of LDA and PCA on IMOX Data
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Figure 7: A Comparison of LDA and PCA on IMOX Data
.
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A Comparison of LDA and PCA on iris Data
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Figure 8: A Comparison of LDA and PCA on iris Data
.
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Some Exercises for Linear Discriminant Analysis

(1) Let p(x|ωi) be arbitrary densities with mean vectors ui and covariance matrices Ci

(not necessarily normal) for i = 1, 2. Let y = wtx be a projection, and let the
induced densities p(y|ωi) have means and variances, μi and σ2

i , respectively.

(a) Show that the criterion function

J1(w) = (μ1 − μ2)
2/(σ2

1 + σ2
2)

is maximized by w = (C1 + C2)
−1(u1 − u2)

Hint: E(wtX|ωi) = μi and V ar(wtX|ωi) = σ2
i for i = 1, 2.

(b) If the prior probability for ωi is denoted by pi = P (ωi), show that

J2(w) = (μ1 − μ2)
2/(p1σ

2
1 + p2σ

2
2)

is maximized by w = [p1C1 + p2C2]
−1(u1 − u2)

(c) The Fisher linear discriminant function employs that a linear function wtx for
which the criterion function J is maximized, where

J(w) = (m1−m2)2

s2
1+s2

2

where yj = xt
jw if xj ∈ ω1 and zk = xt

kw if xk ∈ ω2, and

m1 =
1

n1

n1∑

j=1

yj , m2 =
1

n2

n2∑

k=1

zk, s2
1 =

1

n1

n1∑

j=1

(yj − m1)
2, s2

2 =
1

n2

n2∑

k=1

(zk − m2)
2,

(d) To which of these criterion functions J1 or J2 is the J(w) more closely related?

(2) Let A ∈ Rn×n be a positive definite matrix and x,b ∈ Rn, β ∈ R. Find the criterion
such that g(x) = 1

2
xtAx − btx − β is minimized. What is the minimum value of

g(x), x ∈ Rn?


